Câu hỏi:

10/09/2025 4 Lưu

Cho tam giác \(AOB\) vuông tại \(O\)\(OC\) là tia phân giác của \(\widehat {AOB}.\) Kẻ \(CK \bot OB\) tại \(K\)\(CH \bot OA\) tại \(H.\)

          a) \(\widehat {HCK} = 90^\circ .\)

          b) Tứ giác \(HCKO\) là hình vuông.

          c) \(\widehat {OCK} = 40^\circ .\)

          d) \(\widehat A = \widehat {KCB}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

vvvvv (ảnh 1)

a) Đúng.

\(CK \bot OB\) tại \(K\) nên \(\widehat {CKO} = 90^\circ .\) \(CH \bot OA\) tại \(H\) nên \(\widehat {CHO} = \widehat {CHA} = 90^\circ .\)

Vì tam giác \(AOB\) vuông tại \(O\) nên \(\widehat {AOB} = 90^\circ \) hay \(\widehat {HOK} = 90^\circ .\)

Tứ giác \(HCKO\) có: \(\widehat {CKO} = \widehat {HOK} = \widehat {CHO} = 90^\circ \) nên tứ giác \(HCKO\) là hình chữ nhật.

Do đó, \(\widehat {HCK} = 90^\circ .\)

b) Đúng.

Hình chữ nhật \(HCKO\) có: \(OC\) là tia phân giác của \(\widehat {HOK}\) nên tứ giác \(HCKO\) là hình vuông.

c) Sai.

tứ giác \(HCKO\) là hình vuông nên \(CO\) là tia phân giác của \(\widehat {HCK}.\)

Suy ra: \(\widehat {OCK} = \frac{1}{2}\widehat {HCK} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {OCK} = 45^\circ .\)

d) Đúng.

Vì tam giác \(AHC\) vuông tại \(H\) nên \(\widehat A + \widehat {HCA} = 90^\circ .\)

Ta có: \(\widehat {HCA} + \widehat {HCK} + \widehat {KCB} = 180^\circ \) nên \(\widehat {KCB} + \widehat {HCA} = 180^\circ - \widehat {HCK} = 180^\circ - 90^\circ = 90^\circ .\)

Do đó, \(\widehat A = \widehat {KCB}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

mmmmmm (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có: \(AB = CD,\;AB\;{\rm{//}}\;CD.\) Do đó, tứ giác \(ABCD\) là hình bình hành.

b) Đúng.

\(E\) là trung điểm của \(AB\) nên \(AB = 2AE.\)\(AB = 2AD\;\left( {gt} \right)\) nên \(AE = AD.\)

c) Đúng.

\(F\) là trung điểm của \(CD\) nên \(CD = 2DF.\)\(AB = CD\;\left( {gt} \right),\;AB = 2AE\;\left( {cmt} \right)\) nên \(AE = DF.\)

Tứ giác \(AEFD\) có: \(AE = DF,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEFD\) là hình bình hành.

\(AE = AD\;\left( {cmt} \right)\) nên tứ giác \(AEFD\) là hình thoi.

d) Đúng.

tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B.\)

Để hình thoi \(AEFD\) là hình vuông thì \(\widehat D = 90^\circ .\) Khi đó, \(\widehat B = \widehat D = 90^\circ .\)

Vậy điều kiện để tứ giác \(AEFD\) là hình vuông là \(\widehat B = 90^\circ .\)

Lời giải

Đáp án: \(30\)

ccccc (ảnh 1)

Vì tam giác \(ABD\) cân tại \(A\) nên \(AM\) là đường trung tuyến đồng thời là đường cao của tam giác đó.

Suy ra: \(AM \bot BD\) tại \(M\) hay \(AC \bot BD\) tại \(M.\)

\(C\) là điểm đối xứng với \(A\) qua \(M\) nên \(M\) là trung điểm của \(AC.\)

Tứ giác \(ABCD\) có: \(M\) là giao điểm của hai đường chéo \(AC,\;BD.\) \(M\) vừa là trung điểm của \(BD,\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.

Lại có: \(AC \bot BD\) tại \(M\) nên hình bình hành \(ABCD\) là hình thoi. Do đó, \(AB = BC = CD = DA.\)

Vì rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}\) nên \(BC + BD + CD = 30,\) suy ra \(AB + BD + AD = 30.\)

Vậy chu vi tam giác \(BAD\) bằng \(30\;{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP