Câu hỏi:

10/09/2025 3 Lưu

Phần III. Trắc nghiệm trả lời ngắn

(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)

Cho tứ giác \(ABCD\) như hình vẽ:

Số thích hợp để điền vào “…” là bao nhiêu? (ảnh 1)

Khi đó, \(DA = ...DC.\) Số thích hợp để điền vào “…” là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(1\)

Tứ giác \(ABCD\) có: \(\widehat A = \widehat C,\;\widehat B = \widehat D\) nên tứ giác \(ABCD\) là hình bình hành.

\(AB = BC\) nên hình bình hành \(ABCD\) là hình thoi. Do đó, \(DA = DC.\)

Do đó, số thích hợp để điền vào dấu “…” là \(1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

mmmmmm (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có: \(AB = CD,\;AB\;{\rm{//}}\;CD.\) Do đó, tứ giác \(ABCD\) là hình bình hành.

b) Đúng.

\(E\) là trung điểm của \(AB\) nên \(AB = 2AE.\)\(AB = 2AD\;\left( {gt} \right)\) nên \(AE = AD.\)

c) Đúng.

\(F\) là trung điểm của \(CD\) nên \(CD = 2DF.\)\(AB = CD\;\left( {gt} \right),\;AB = 2AE\;\left( {cmt} \right)\) nên \(AE = DF.\)

Tứ giác \(AEFD\) có: \(AE = DF,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEFD\) là hình bình hành.

\(AE = AD\;\left( {cmt} \right)\) nên tứ giác \(AEFD\) là hình thoi.

d) Đúng.

tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B.\)

Để hình thoi \(AEFD\) là hình vuông thì \(\widehat D = 90^\circ .\) Khi đó, \(\widehat B = \widehat D = 90^\circ .\)

Vậy điều kiện để tứ giác \(AEFD\) là hình vuông là \(\widehat B = 90^\circ .\)

Lời giải

cccc (ảnh 1)

a) Đúng.

Vì tam giác \(ABO\) vuông tại \(O\) nên \(AO \bot BO\) tại \(O\) hay \(AC \bot BD\) tại \(O.\)

\(C\) đối xứng với điểm \(A\) qua \(O\) nên \(O\) là trung điểm của \(AC.\)

Tứ giác \(ABCD\) có: \(O\) là giao điểm của \(AC,\;BD.\)\(O\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.

Lại có: \(AC \bot BD\) tại \(O\) nên tứ giác \(ABCD\) là hình thoi.

b) Sai.

Vì chu vi hình thoi \(ABCD\) bằng \[40\;{\rm{cm}}\] nên \(4AB = 40\) suy ra \(AB = 10\;{\rm{cm}}.\) Vậy \(AB = 10\;{\rm{cm}}.\)

c) Sai.

Vì tứ giác \(ABCD\) là hình thoi nên \(AB = BC.\) Do đó tam giác \(ABC\) cân tại \(B.\)

Do đó, \(\widehat {ACB} = \widehat {CAB}.\)

tứ giác \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {DAB}.\) Do đó, \(\widehat {DAB} = 2\widehat {CAB}.\)

Vậy \(\widehat {DAB} = 2\widehat {ACB}.\)

d) Đúng.

Nếu \(\widehat {DAB} = 120^\circ \) thì:

Vì tứ giác \(ABCD\) là hình thoi nên \(\widehat {BAD} = \widehat {DCB} = 120^\circ ,\;\widehat {ADC} = \widehat {ABC}.\)

Lại có: \(\widehat {BAD} + \widehat {DCB} + \widehat {ADC} + \widehat {ABC} = 360^\circ \)

\(120^\circ + 120^\circ + \widehat {ABC} + \widehat {ABC} = 360^\circ \)

\(2\widehat {ABC} = 120^\circ \)

\(\widehat {ABC} = 60^\circ .\)

Tam giác \(ABC\) cân tại \(B\)\(\widehat {ABC} = 60^\circ \) nên tam giác \(ABC\) đều.

Vậy điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)