Câu hỏi:

10/09/2025 9 Lưu

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \[y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1\]\(y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{{11}}{4} > 0,\,\forall x \in \mathbb{R}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vận tốc tức thời của chất điểm là \(v\left( t \right) = s'\left( t \right) = - {t^2} + 36t - 35\).

Gia tốc tức thời của chất điểm là \(a\left( t \right) = v'\left( t \right) = - 2t + 36\).

Vì vận tốc tức thời của chất điểm giảm nên \(a\left( t \right) < 0 \Leftrightarrow - 2t + 36 < 0 \Leftrightarrow t > 18\).

Do đó, trong 40 giây đầu tiên, chất điểm có vận tốc tức thời giảm trong khoảng thời gian \(\left( {18;40} \right)\). Suy ra \(a = 18\), \(b = 40\).

Vậy \(P = 2b - 3a = 26\).

Trả lời: 26.

Lời giải

a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\)\((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.

Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.

c) Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)

d) Gọi \[d:y = ax + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

    \[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.