Câu hỏi:

10/09/2025 767 Lưu

Đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = x + 3 + \frac{1}{{2x + 1}}\) có phương trình là

A. \(y = 2x + 1\).                    
B. \(y = x - 3\).                       
C. \(y = x + 3\).                                          
D. \(y = 2x - 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có \(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).

b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{x + 1}} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{x + 1}} = 1\) nên \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

c) \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{x - 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x - 1}}{{x + 1}} = - \infty \) nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

Khi đó tâm đối xứng của đồ thị hàm số là giao điểm của hai đường tiệm cận có tọa độ là \(\left( { - 1;1} \right)\).

d) Gọi \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\)\( \Rightarrow M\left( {{x_0};1 - \frac{2}{{{x_0} + 1}}} \right)\).

Khoảng cách từ M đến tiệm cận đứng: \({d_1} = \left| {{x_0} + 1} \right|\).

Khoảng cách từ M đến tiệm cận ngang: \({d_2} = \left| {{y_0} - 1} \right| = \left| {1 - \frac{2}{{{x_0} + 1}} - 1} \right| = \frac{2}{{\left| {{x_0} + 1} \right|}}\).

Vậy \({d_1}.{d_2} = 2\).

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Sai.

Lời giải

a) Ta có tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

\(y' = \frac{{ - 1}}{{{{\left( { - x + 1} \right)}^2}}} < 0,\forall x \ne 1\).

Bảng biến thiên

,,,,, (ảnh 2)

b) Giao của hai đường tiệm cận là tâm đối xứng của đồ thị hàm số. Do đó tâm đối xứng là \(I\left( {1; - 2} \right)\).

c) Đường tiệm cận đứng của đồ thị hàm số là \(x = 1\).

d) Đường tiệm cận ngang của đồ thị hàm số là \(y = - 2\).

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Sai.

Câu 3

A. \(y = 2x - 5\).                     
B. \(y = x - 2\).                       
C. \(y = x + 5\).                                          
D. \(y = x - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 0.                                        
B. 1.                                        
C. 2.                                            
D. 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP