Câu hỏi:

10/09/2025 104 Lưu

Có bao nhiêu giá trị của tham số thực m để đồ thị hàm số \(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}}\) có đúng hai đường tiệm cận?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + m}}{{{x^2} - 3x + 2}} = 1\). Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

Ta có \(y = \frac{{{x^2} + m}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Do đó để đồ thị hàm số có đúng hai đường tiệm cận thì đồ thị hàm số có đúng 1 tiệm cận đứng.

Do đó phương trình \({x^2} + m = 0\) phải nhận \(x = 1\) hoặc \(x = 2\) làm nghiệm.

Suy ra \(\left[ \begin{array}{l}{1^2} + m = 0\\{2^2} + m = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = - 4\end{array} \right.\).

Vậy có 2 giá trị của m.

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 2x + 1\).                    
B. \(y = x - 3\).                       
C. \(y = x + 3\).                                          
D. \(y = 2x - 1\).

Lời giải

\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.

Lời giải

a) Ta có tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

\(y' = \frac{{ - 1}}{{{{\left( { - x + 1} \right)}^2}}} < 0,\forall x \ne 1\).

Bảng biến thiên

,,,,, (ảnh 2)

b) Giao của hai đường tiệm cận là tâm đối xứng của đồ thị hàm số. Do đó tâm đối xứng là \(I\left( {1; - 2} \right)\).

c) Đường tiệm cận đứng của đồ thị hàm số là \(x = 1\).

d) Đường tiệm cận ngang của đồ thị hàm số là \(y = - 2\).

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Sai.

Câu 3

A. \(y = 2x - 5\).                     
B. \(y = x - 2\).                       
C. \(y = x + 5\).                                          
D. \(y = x - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 0.                                        
B. 1.                                        
C. 2.                                            
D. 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP