Câu hỏi:

11/09/2025 171 Lưu

Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD, cạnh đáy bằng a, cạnh bên bằng 2a.

a) Góc giữa hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là 0°.

b) Góc giữa hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là 180°.

c) Cosin của góc giữa hai vectơ \(\overrightarrow {BA} \)\(\overrightarrow {CS} \) bằng \(\frac{1}{4}\).

d) Góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 60°.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

vvvvvvv (ảnh 1)

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]

Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)

Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]

Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].

\(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).

\(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).

Lời giải

a) Có \(f'\left( x \right) = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0,\forall x \in \left[ {0;4} \right]\). Suy ra hàm số đã cho nghịch biến trên đoạn \([0;4]\).

Vậy \(\mathop {\max }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( 0 \right) = 3;\mathop {\min }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( 4 \right) = \frac{{11}}{5}\).

b) Có \(f'\left( x \right) = \frac{{ - 4{x^2} - 6x + 4}}{{{{\left( {{x^2} + 1} \right)}^2}}}\); \(f'\left( x \right) = 0 \Leftrightarrow - 4{x^2} - 6x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = \frac{1}{2}\end{array} \right.\).

Bảng biến thiên

Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của hàm số sau trên đoạn đã chỉ ra. (ảnh 1)

Dựa vào bảng biến thiên, ta có: \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = f\left( { - 2} \right) = 1;\mathop {\max }\limits_\mathbb{R} f\left( x \right) = f\left( {\frac{1}{2}} \right) = 6\).

Câu 4

A. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MA} + \overrightarrow {MD} } \right)\).                                          
B. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MB} } \right)\).
C. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right)\).                                          
D. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} - \overrightarrow {MD} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP