Câu hỏi:

11/09/2025 88 Lưu

Phương trình \(\cos 2x - \cos \left( {\pi - x} \right) = 0\) có bao nhiêu nghiệm thuộc khoảng \(\left( { - \pi ;\pi } \right)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\cos 2x - \cos \left( {\pi - x} \right) = 0 \Leftrightarrow \cos 2x = \cos \left( {\pi - x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \pi - x + k2\pi \\2x = - \pi + x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}3x = \pi + k2\pi \\x = - \pi + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = - \pi + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

+ Với \( - \pi < \frac{\pi }{3} + k\frac{{2\pi }}{3} < \pi \Leftrightarrow \frac{{ - 4\pi }}{3} < k\frac{{2\pi }}{3} < \frac{{2\pi }}{3} \Leftrightarrow - 2 < k < 1\).

Mà \(k \in \mathbb{Z}\) nên \(k = 0,k = - 1\) thỏa mãn.

+ Với \( - \pi < - \pi + k2\pi < \pi \Leftrightarrow 0 < k2\pi < 2\pi \Leftrightarrow 0 < k < 1\). Mà \(k \in \mathbb{Z}\) nênkhông có giá trị k nào thỏa mãn.

Vậy phương trình đã cho có 2 nghiệm thuộc khoảng \(\left( { - \pi ;\pi } \right)\).

Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số có tập xác định \(D = \mathbb{R}\).

Ta có \(y = 5 + 4\sin 2x\cos 2x = 5 + 2\sin 4x\).

Do \( - 1 \le \sin 4x \le 1 \Leftrightarrow - 2 \le 2\sin 4x \le 2 \Leftrightarrow 3 \le 5 + 2\sin 4x \le 7 \Leftrightarrow 3 \le y \le 7\).

Suy ra tập giá trị của hàm số là \(T = \left[ {3\,;7} \right]\).

Vậy \(a + b = 3 + 7 = 10\).

Đáp án: 10.

Lời giải

Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4 \cdot 30\% = 1,2\)triệu đồng để gửi tiết kiệm.

Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{\left( {1 + 0,004} \right)^{24}}\).

Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{\left( {1 + 0,004} \right)^{23}}\).

Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \[{u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\].

Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với số hạng đầu \({u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\) và công bội \(q = 1,004\).

Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.

\({S_{24}} = \frac{{{u_1}\left( {1 - {q^{24}}} \right)}}{{1 - q}} = \frac{{1,2048\left( {1 - 1,{{004}^{24}}} \right)}}{{1 - 1,004}} \approx 30,285148\) (triệu đồng).

Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30 285 148 đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.

\[\left[ {40;60} \right)\].

B.

\[\left[ {20;40} \right)\].

C.

\[\left[ {60;80} \right)\].

D.

\[\left[ {80;100} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP