Hộp sữa 1 lít được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh \(x\) cm. Tìm \(x\) để diện tích toàn phần của hộp nhỏ nhất.
Quảng cáo
Trả lời:
Thể tích hộp sữa là 1 lít = 1 dm3 = 1000 cm3. Khi đó chiều cao của hộp sữa là \(\frac{{1000}}{{{x^2}}}\) (cm).
Đặt diện tích toàn phần của hộp sữa là \(y = 2{x^2} + 4x.\frac{{1000}}{{{x^2}}} = \frac{{2{x^3} + 4000}}{x}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Xét \(y' = \frac{{4{x^3} - 4000}}{{{x^2}}} = 0 \Leftrightarrow x = 10\) (cm).
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy \(x = 10\)cm thì diện tích toàn phần của hộp sữa sẽ nhỏ nhất là 600 cm2.
Trả lời: 10.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy:
+) Hàm số đồng biến trên \(\left( { - 2; - 1} \right)\) và \(\left( {2;6} \right)\) suy ra \(f\left( { - 1} \right) > f\left( { - 2} \right)\) và \(f\left( 6 \right) > f\left( 2 \right)\) (1).
+) Hàm số nghịch biến trên \(\left( { - 1;2} \right)\)suy ra \(f\left( { - 1} \right) > f\left( 2 \right)\) (2).
Từ (1), (2) suy ra \(\mathop {\max }\limits_{\left[ { - 2;6} \right]} f\left( x \right) = \max \left\{ {f\left( { - 2} \right),f\left( { - 1} \right),f\left( 2 \right),f\left( 6 \right)} \right\} = \max \left\{ {f\left( { - 1} \right),f\left( 6 \right)} \right\}\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có \(f'\left( x \right) = \frac{{{m^2} - m + 1}}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in D\).
Khi đó \(\mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right) = f\left( 0 \right) \Leftrightarrow - {m^2} + m = - 2 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 2\end{array} \right.\).
Vậy có 2 giá trị m để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x - {m^2} + m}}{{x + 1}}\) trên đoạn \(\left[ {0;1} \right]\) bằng \( - 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[x = \frac{2}{3}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[t = 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Không có \(M\); \[m = - 3\].
B. \[M = - 3\]; \[m = 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



