Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình bên dưới

a) \(f\left( { - 5} \right) < f\left( 4 \right)\).
b) Hàm số có giá trị nhỏ nhất bằng 2.
c) Đồ thị hàm số có tiệm cận đứng \(x = 0\).
d) Đồ thị hàm số không có tiệm cận ngang.
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình bên dưới
a) \(f\left( { - 5} \right) < f\left( 4 \right)\).
b) Hàm số có giá trị nhỏ nhất bằng 2.
c) Đồ thị hàm số có tiệm cận đứng \(x = 0\).
d) Đồ thị hàm số không có tiệm cận ngang.
Quảng cáo
Trả lời:

Từ bảng biến thiên ta thấy:
a) \(f\left( { - 5} \right) < 2\) và \(f\left( 4 \right) > 2\) nên \(f\left( { - 5} \right) < f\left( 4 \right)\).
b) Hàm số không có giá trị nhỏ nhất.
c) Do \(\mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \) nên đồ thị hàm số có tiệm cận đứng \(x = 0\).
d) Do \(\mathop {\lim }\limits_{x \to - \infty } y = 2\) nên đồ thị hàm số có tiệm cận ngang \(y = 2\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.
b) Có \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]
c) Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].
d) Có \[\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f(x) + 2}} = 0\].
Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Câu 3
A. \(m < 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Đồ thị hàm số có tiệm cận đứng \(x = - 1.\)
B. Đồ thị hàm số có tiệm cận ngang \(y = 2.\)
C. Đồ thị hàm số có tâm đối xứng là \(I\left( {2; - 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.