Câu hỏi:

12/09/2025 8 Lưu

Cho hàm số y=x2-3x+5x+1 có đồ thị \(\left( C \right)\).

a) Đồ thị (C) có tiệm cận ngang là đường thẳng \(x = - 1\).

b) Đường thẳng \(y = x + 1\) là tiệm cận xiên của đồ thị \(\left( C \right)\).

c) Hàm số nghịch biến trên khoảng \(\left( { - 4; - 1} \right)\)\(\left( { - 1;2} \right)\).

d) Đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị hàm số là \(y = 2x + 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 5}}{{x + 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3x + 5}}{{x + 1}} = - \infty \).

Nên đồ thị hàm số trên không có tiệm cận ngang.

b) y=x2-3x+5x+1\( = x - 4 + \frac{9}{{x + 1}}\).

\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x - 4} \right)} \right] = 0\).

\( \Rightarrow \)Tiệm cận xiên của \(\left( C \right)\) là đường thẳng \(y = x - 4\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

\(y' = \frac{{{x^2} + 2x - 8}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0 \Leftrightarrow {x^2} + 2x - 8 = 0 \Leftrightarrow x = 2\) hoặc \(x = - 4\).

Bảng biến thiên:

Cho hàm số y=(x^2-3x+5)/(x+1) có đồ thị (C) (ảnh 1)

Hàm số nghịch biến trên các khoảng  \(\left( { - 1;2} \right)\).

d) Từ bảng biến thiên suy ra đồ thị hàm số có 2 điểm cực trị là \(A\left( { - 4; - 11} \right),B(2;1)\).

Vậy đường thẳng qua 2 điểm cực trị là

\(\frac{{x - 2}}{{2 - ( - 4)}} = \frac{{y - 1}}{{1 - ( - 11)}} \Leftrightarrow \frac{{x - 2}}{6} = \frac{{y - 1}}{{12}}\)\( \Rightarrow 12x - 24 = 6y - 6 \Leftrightarrow y = 2x - 3\).

Đáp án: a) Sai;   b) Sai;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số ta có:

a) Đồ thị hàm số có một điểm cực trị là \(\left( {0;0} \right)\).

b) \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty \).

c) Đồ thị hàm số có 2 đường tiệm cận đứng là \(x = 1;x = - 1\).

d) Đồ thị hàm số có 1 đường tiệm cận ngang là \(y = 2\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

Câu 2

Lời giải

Đáp án A: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{1 + x}}{{1 - x}} = - 1\] \( \Rightarrow y = - 1\)là tiệm cận ngang .

Đáp án B: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{x - 2}}{{x + 2}} = 1\] \( \Rightarrow y = 1\) là tiệm cận ngang.

Đáp án C: \[\mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = - \infty \]; \[\mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = + \infty \]\( \Rightarrow \)đồ thị hàm số không có tiệm cận ngang.

Đáp án D: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1 - x}}{{1 - x}} = 1\] \( \Rightarrow y = 1\)là tiệm cận ngang. Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP