Số lượng sản phẩm bán được của một cửa hàng quần áo trong \(t\) (tháng) được cho bởi công thức: \(S\left( t \right) = 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right)\) với \(t \ge 1\). Xem \(y = S\left( t \right)\) là một hàm số xác định trên nửa khoảng \(\left[ {1; + \infty } \right)\), biết rằng tiệm cận ngang của đồ thị hàm số có dạng \(\frac{a}{b}\,,\,a\,,\,b \in {\mathbb{N}^*}\,,\,\left( {a\,,\,b} \right) = 1\). Tính \(P = a - 2b\).
Số lượng sản phẩm bán được của một cửa hàng quần áo trong \(t\) (tháng) được cho bởi công thức: \(S\left( t \right) = 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right)\) với \(t \ge 1\). Xem \(y = S\left( t \right)\) là một hàm số xác định trên nửa khoảng \(\left[ {1; + \infty } \right)\), biết rằng tiệm cận ngang của đồ thị hàm số có dạng \(\frac{a}{b}\,,\,a\,,\,b \in {\mathbb{N}^*}\,,\,\left( {a\,,\,b} \right) = 1\). Tính \(P = a - 2b\).
Quảng cáo
Trả lời:
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } S\left( t \right) = \mathop {\lim }\limits_{x \to + \infty } 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right) = 200.\frac{2}{3} = \frac{{400}}{3}\) \( \Rightarrow a = 400\,;\,b = 3\).
Vậy \(P = a - 2b = 400 - 6 = 394\).
Trả lời: 394.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.
b) Có \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]
c) Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].
d) Có \[\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f(x) + 2}} = 0\].
Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Câu 3
A. \(m < 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



