Câu hỏi:

12/09/2025 33 Lưu

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án.

Đồ thị được cho trong hình vẽ dưới đây là của hàm số nào?

Ảnh có chứa biểu đồ, hàng, Sơ đồ

Mô tả được tạo tự động

A. \[y = {\rm{ }}{x^4} - 2{x^2}\].                                      

B. \[y = {x^{\rm{3}}} - 3x - 1\].        
C. \[y = - {x^{\rm{3}}} + 3x\].                                               
D. \[y = {x^3} - 3x\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đồ thị ta thấy

Đây là đồ thị hàm số bậc ba nên loại đáp án \[y = {\rm{ }}{x^4} - 2{x^2}\].

Hàm số bậc ba có hệ số của \[{x^3}\]\[a > 0\] nên loại đáp án \[y = - {x^{\rm{3}}} + 3x\].

Đồ thị hàm số đi qua điểm\[O\left( {0;0} \right)\]nên loại đáp án \[y = {x^{\rm{3}}} - 3x - 1\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = ax + b\) là đường tiệm cận xiên của đồ thị hàm số.

Từ đồ thị ta suy ra được \(y = x + 1\) là tiệm cận xiên nên \(a = 1,b = 1\)

\(x = 1\) là tiệm cận đứng của đồ thị hàm số nên \(c = - 1\)

Vậy \(a + b + c = 1\).

Trả lời: 1.

Lời giải

Với \(m = 1\), hàm số có dạng \(y = \frac{{{x^2} + x - 2}}{{x + 3}} = x - 2 + \frac{4}{{x + 3}}\).

a) Ta có \(y' = 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}}\); \(y' = 0 \Leftrightarrow 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\).

Bảng biến thiên

Dựa vào bảng biến thiên, hàm số có 2 điểm cực trị.

b) Có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = 0\) nên \(y = x - 2\) là tiệm cận xiên của đồ thị hàm số.

c) \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + x - 2}}{{x + 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + x - 2}}{{x + 3}} = - \infty \) nên \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.

Thay \(x = - 3\) vào \(y = x - 2\) được \(y = 1\).

Do đó giao điểm của tiệm cận đứng và tiệm cận xiên là \(I\left( { - 3;1} \right)\).

d) Ta có: \(y = \frac{{m{x^2} + (3{m^2} - 2)x - 2}}{{x + 3m}} = mx - 2 + \frac{{6m - 2}}{{x + 3m}}\)

* Nếu \(m = \frac{1}{3}\) đồ thị hàm số không tồn tại hai tiệm cận

* Nếu \(m \ne \frac{1}{3}\), đồ thị hàm số có hai tiệm cận

\({d_1}:x = - 3m \Leftrightarrow x + 3m = 0\)\({d_2}:y = mx - 2 \Leftrightarrow mx - y - 2 = 0\).

\( \Rightarrow \overrightarrow {{n_1}} (1;0),{\rm{ }}\overrightarrow {{n_2}} (m; - 1)\) lần lượt là vectơ pháp tuyến của \({d_1}\)\({d_2}\).

Góc giữa \({d_1}\)\({d_2}\) bằng \(45^\circ \Leftrightarrow \cos 45^\circ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)\( \Leftrightarrow \frac{{\left| m \right|}}{{\sqrt {{m^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow m = \pm 1\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai; d) Đúng.

Câu 3

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                

B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).

C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                       
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP