Câu hỏi:

12/09/2025 50 Lưu

Bảng biến thiên ở hình dưới là của một trong bốn hàm số được liệt kê dưới đây. Hãy tìm hàm số đó.

Ảnh có chứa hàng, biểu đồ, Song song

Mô tả được tạo tự động

A. \(y = \frac{{2x - 3}}{{x + 1}}\).                                     

B. \(y = \frac{{2x + 3}}{{x + 1}}\).   
C. \(y = \frac{{ - 2x - 3}}{{x + 1}}\).                                               
D. \(y = \frac{{ - x + 1}}{{x - 2}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào bảng biến thiên, ta có \(x = - 1\) là tiệm cận đứng của đồ thị hàm số; \(y = 2\) là tiệm cận ngang của đồ thị hàm số. Do đó loại đáp án C, D.

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\)

Xét đáp án A có \[y' = \frac{5}{{{{\left( {x + 1} \right)}^2}}} > 0\,\,\forall x \ne - 1\]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = ax + b\) là đường tiệm cận xiên của đồ thị hàm số.

Từ đồ thị ta suy ra được \(y = x + 1\) là tiệm cận xiên nên \(a = 1,b = 1\)

\(x = 1\) là tiệm cận đứng của đồ thị hàm số nên \(c = - 1\)

Vậy \(a + b + c = 1\).

Trả lời: 1.

Lời giải

Với \(m = 1\), hàm số có dạng \(y = \frac{{{x^2} + x - 2}}{{x + 3}} = x - 2 + \frac{4}{{x + 3}}\).

a) Ta có \(y' = 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}}\); \(y' = 0 \Leftrightarrow 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\).

Bảng biến thiên

Dựa vào bảng biến thiên, hàm số có 2 điểm cực trị.

b) Có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = 0\) nên \(y = x - 2\) là tiệm cận xiên của đồ thị hàm số.

c) \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + x - 2}}{{x + 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + x - 2}}{{x + 3}} = - \infty \) nên \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.

Thay \(x = - 3\) vào \(y = x - 2\) được \(y = 1\).

Do đó giao điểm của tiệm cận đứng và tiệm cận xiên là \(I\left( { - 3;1} \right)\).

d) Ta có: \(y = \frac{{m{x^2} + (3{m^2} - 2)x - 2}}{{x + 3m}} = mx - 2 + \frac{{6m - 2}}{{x + 3m}}\)

* Nếu \(m = \frac{1}{3}\) đồ thị hàm số không tồn tại hai tiệm cận

* Nếu \(m \ne \frac{1}{3}\), đồ thị hàm số có hai tiệm cận

\({d_1}:x = - 3m \Leftrightarrow x + 3m = 0\)\({d_2}:y = mx - 2 \Leftrightarrow mx - y - 2 = 0\).

\( \Rightarrow \overrightarrow {{n_1}} (1;0),{\rm{ }}\overrightarrow {{n_2}} (m; - 1)\) lần lượt là vectơ pháp tuyến của \({d_1}\)\({d_2}\).

Góc giữa \({d_1}\)\({d_2}\) bằng \(45^\circ \Leftrightarrow \cos 45^\circ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)\( \Leftrightarrow \frac{{\left| m \right|}}{{\sqrt {{m^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow m = \pm 1\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai; d) Đúng.

Câu 3

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                

B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).

C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                       
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP