Đồ thị của hàm số nào dưới đây có dnagj như đường cong trong hình sau.

Đồ thị của hàm số nào dưới đây có dnagj như đường cong trong hình sau.
A. \(y = \frac{{2x + 1}}{{x + 1}}\).
B. \(y = {x^3} - 3x - 1\).
Quảng cáo
Trả lời:

Quan sát đồ thị hàm số ta thấy đồ thị dạng bậc nhất trên bậc nhất. Do đó loại B, D.
Quan sát đồ thị hàm số ta thấy \(x = 0\) thì \(y < 0\). Do đó chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = ax + b\) là đường tiệm cận xiên của đồ thị hàm số.
Từ đồ thị ta suy ra được \(y = x + 1\) là tiệm cận xiên nên \(a = 1,b = 1\)
\(x = 1\) là tiệm cận đứng của đồ thị hàm số nên \(c = - 1\)
Vậy \(a + b + c = 1\).
Trả lời: 1.
Lời giải
Với \(m = 1\), hàm số có dạng \(y = \frac{{{x^2} + x - 2}}{{x + 3}} = x - 2 + \frac{4}{{x + 3}}\).
a) Ta có \(y' = 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}}\); \(y' = 0 \Leftrightarrow 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\).
Bảng biến thiên
Dựa vào bảng biến thiên, hàm số có 2 điểm cực trị.
b) Có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = 0\) nên \(y = x - 2\) là tiệm cận xiên của đồ thị hàm số.
c) \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + x - 2}}{{x + 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + x - 2}}{{x + 3}} = - \infty \) nên \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.
Thay \(x = - 3\) vào \(y = x - 2\) được \(y = 1\).
Do đó giao điểm của tiệm cận đứng và tiệm cận xiên là \(I\left( { - 3;1} \right)\).
d) Ta có: \(y = \frac{{m{x^2} + (3{m^2} - 2)x - 2}}{{x + 3m}} = mx - 2 + \frac{{6m - 2}}{{x + 3m}}\)
* Nếu \(m = \frac{1}{3}\) đồ thị hàm số không tồn tại hai tiệm cận
* Nếu \(m \ne \frac{1}{3}\), đồ thị hàm số có hai tiệm cận
\({d_1}:x = - 3m \Leftrightarrow x + 3m = 0\) và \({d_2}:y = mx - 2 \Leftrightarrow mx - y - 2 = 0\).
\( \Rightarrow \overrightarrow {{n_1}} (1;0),{\rm{ }}\overrightarrow {{n_2}} (m; - 1)\) lần lượt là vectơ pháp tuyến của \({d_1}\) và \({d_2}\).
Góc giữa \({d_1}\) và \({d_2}\) bằng \(45^\circ \Leftrightarrow \cos 45^\circ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)\( \Leftrightarrow \frac{{\left| m \right|}}{{\sqrt {{m^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow m = \pm 1\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Câu 3
A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).
B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.