Câu hỏi:

12/09/2025 9 Lưu

Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên các khoảng \(( - \infty ; - 2)\)\((0; + \infty )\).

b) Hàm số đã cho không có cực trị.

c) Đồ thị hàm số có đường tiệm cận xiên là \(y = x\).

d) Đồ thị hàm số có tâm đối xứng là \(I( - 1; - 1)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có: \(y = \frac{{{x^2} + x + 1}}{{x + 1}} = x + \frac{1}{{x + 1}}\)

Tập xác định: \(\mathbb{R}\backslash \{ - 1\} \).

Ta có \(y' = 1 - \frac{1}{{{{(x + 1)}^2}}} = \frac{{{{(x + 1)}^2} - 1}}{{{{(x + 1)}^2}}}\); \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + 1 = 1}\\{x + 1 = - 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.} \right.\).

Bảng biến thiên

Trên các khoảng \(( - \infty ; - 2)\)\((0; + \infty )\) ta có \(y' > 0\) nên hàm số đồng biến trên các khoảng này.

b) Dựa vào bảng biến thiên ta có

Hàm số đạt cực đại tại \(x = - 2\) và , hàm số đạt cực tiểu tại \(x = 0\)\({y_{CT}} = 1\).

c) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 1}} = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - x} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x + 1}} = 0\).

Đồ thị hàm số đã cho có một đường tiệm cận xiên \(y = x\).

d) Đồ thị hàm số có tâm đối xứng là \(I( - 1; - 1)\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \(m = 1\), hàm số có dạng \(y = \frac{{{x^2} + x - 2}}{{x + 3}} = x - 2 + \frac{4}{{x + 3}}\).

a) Ta có \(y' = 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}}\); \(y' = 0 \Leftrightarrow 1 - \frac{4}{{{{\left( {x + 3} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\).

Bảng biến thiên

Dựa vào bảng biến thiên, hàm số có 2 điểm cực trị.

b) Có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = 0\) nên \(y = x - 2\) là tiệm cận xiên của đồ thị hàm số.

c) \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + x - 2}}{{x + 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + x - 2}}{{x + 3}} = - \infty \) nên \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.

Thay \(x = - 3\) vào \(y = x - 2\) được \(y = 1\).

Do đó giao điểm của tiệm cận đứng và tiệm cận xiên là \(I\left( { - 3;1} \right)\).

d) Ta có: \(y = \frac{{m{x^2} + (3{m^2} - 2)x - 2}}{{x + 3m}} = mx - 2 + \frac{{6m - 2}}{{x + 3m}}\)

* Nếu \(m = \frac{1}{3}\) đồ thị hàm số không tồn tại hai tiệm cận

* Nếu \(m \ne \frac{1}{3}\), đồ thị hàm số có hai tiệm cận

\({d_1}:x = - 3m \Leftrightarrow x + 3m = 0\)\({d_2}:y = mx - 2 \Leftrightarrow mx - y - 2 = 0\).

\( \Rightarrow \overrightarrow {{n_1}} (1;0),{\rm{ }}\overrightarrow {{n_2}} (m; - 1)\) lần lượt là vectơ pháp tuyến của \({d_1}\)\({d_2}\).

Góc giữa \({d_1}\)\({d_2}\) bằng \(45^\circ \Leftrightarrow \cos 45^\circ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)\( \Leftrightarrow \frac{{\left| m \right|}}{{\sqrt {{m^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow m = \pm 1\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai; d) Đúng.

Lời giải

a) Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} = - x + 2 - \frac{1}{{x + 1}}\).

Ta có \(y' = \frac{{ - {x^2} - 2x}}{{{{(x + 1)}^2}}}\) ; \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.\).

Khi đó ta có bảng biến thiên:

Ảnh có chứa hàng, biểu đồ, văn bản, Sơ đồ

Mô tả được tạo tự động

Dựa vào bảng biến thiên, ta có hàm số đồng biến trên các khoảng \(\left( { - 2; - 1} \right)\) và (−1; 0).

b) Dựa vào bảng biến thiên ta có hàm số có hai điểm cực trị.

c) \(y = 0 \Leftrightarrow - {x^2} + x + 1 = 0\) (*).

Phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.

d) Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( { - x + 2} \right)} \right] = 0\) nên \(y = - x + 2\) là tiệm cận xiên của đồ thị hàm số.

Tiệm cận xiên của đồ thị là \(y = - x + 2\) không đi qua \(A(1;2)\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP