Câu hỏi:

13/09/2025 6 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Cho \(\cos \alpha = - \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \).

a) \(\sin \alpha < 0\).

b) \(\cos \left( {\pi - \alpha } \right) > 0\).

c) Biết \({\left( {\sin \alpha + 2\cos \alpha } \right)^2} = \frac{{a + b\sqrt {15} }}{{16}}\) với \(a,b \in \mathbb{Z}\). Khi đó \(a + b = 57\).

d) Giá trị của biểu thức \(B = 2\cos \alpha - 3\cos \left( {\pi - \alpha } \right) + 5\sin \left( {\frac{{7\pi }}{2} - \alpha } \right) + \cot \left( {\frac{{3\pi }}{2} - \alpha } \right)\)\(\sqrt {15} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \(\frac{\pi }{2} < \alpha < \pi \) nên \(\sin \alpha > 0\).

b) \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha = \frac{{\sqrt {15} }}{4} > 0\).

c) \({\left( {\sin \alpha + 2\cos \alpha } \right)^2}\)\( = {\sin ^2}\alpha + 4\sin \alpha .\cos \alpha + 4{\cos ^2}\alpha \).

\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha + \frac{{15}}{{16}} = 1\)\( \Leftrightarrow {\sin ^2}\alpha = \frac{1}{{16}} \Rightarrow \sin \alpha = \frac{1}{4}\)\(\sin \alpha > 0\).

Suy ra \({\left( {\sin \alpha + 2\cos \alpha } \right)^2} = \frac{1}{{16}} + 4.\frac{1}{4}.\left( {\frac{{ - \sqrt {15} }}{4}} \right) + 4.\frac{{15}}{{16}} = \frac{{61 - 4\sqrt {15} }}{{16}}\).

Suy ra \(a = 61;b = - 4\). Do đó \(a + b = 57\).

d) \(B = 2\cos \alpha - 3\cos \left( {\pi - \alpha } \right) + 5\sin \left( {\frac{{7\pi }}{2} - \alpha } \right) + \cot \left( {\frac{{3\pi }}{2} - \alpha } \right)\)

\( = 2\cos \alpha + 3\cos \alpha - 5\cos \alpha + \tan \alpha \)\( = \tan \alpha \)\( = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{4}:\left( { - \frac{{\sqrt {15} }}{4}} \right) = - \frac{{\sqrt {15} }}{{15}}\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có L=tan20°.tan45°.tan70° =tan20°.tan70°.tan45° =tan20°.cot20°.tan45°=1. Chọn B.

Lời giải

\(A = \cos \left( {\alpha - \frac{\pi }{2}} \right) + \sin \left( {\alpha - \pi } \right) + \tan \left( {\pi + \alpha } \right)\)

\( = \sin \alpha - \sin \alpha + \tan \alpha \) \( = \tan \alpha = \frac{1}{{\cot \alpha }} = - 0,5\).

Trả lời: −0,5.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP