Câu hỏi:

14/09/2025 73 Lưu

Cho hàm số \(f\left( x \right) = \tan 3x\).

a) Giá trị của hàm số tại \(x = \frac{\pi }{3}\) bằng 0.

b) Tập xác định của hàm số \(f\left( x \right)\)\(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi |k \in \mathbb{Z}} \right\}\).

c) Hàm số \(f\left( x \right)\) là hàm số lẻ.

d) Tổng các nghiệm của phương trình \(\tan 3x = 1\) trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{5\pi }}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(f\left( {\frac{\pi }{3}} \right) = \tan \left( {3.\frac{\pi }{3}} \right) = \tan \pi = 0\).

b) Điều kiện: \(\cos 3x \ne 0\)\( \Leftrightarrow 3x \ne \frac{\pi }{2} + k\pi \)\( \Leftrightarrow x \ne \frac{\pi }{6} + k\frac{\pi }{3},k \in \mathbb{Z}\).

Do tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).

c) Có \(f\left( { - x} \right) = \tan \left( { - 3x} \right) = - \tan 3x = - f\left( x \right)\). Do đó hàm số \(f\left( x \right)\) là hàm số lẻ.

d) Ta có \(\tan 3x = 1\)\( \Leftrightarrow 3x = \frac{\pi }{4} + k\pi \)\( \Leftrightarrow x = \frac{\pi }{{12}} + k\frac{\pi }{3},k \in \mathbb{Z}\).

\(x \in \left( {0;\pi } \right)\) nên \(0 < \frac{\pi }{{12}} + k\frac{\pi }{3} < \pi \)\( \Leftrightarrow - \frac{1}{4} < k < \frac{{11}}{4}\)\(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2} \right\}\).

Khi đó ta có các nghiệm \(x \in \left\{ {\frac{\pi }{{12}};\frac{{5\pi }}{{12}};\frac{{3\pi }}{4}} \right\}\).

Do đó tổng các nghiệm là \(\frac{\pi }{{12}} + \frac{{5\pi }}{{12}} + \frac{{3\pi }}{4} = \frac{{5\pi }}{4}\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(h = 12\)\( \Leftrightarrow 15 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 12\)\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = - 1\)\( \Leftrightarrow \frac{\pi }{{12}}t = \pi + k2\pi \)\( \Leftrightarrow t = 12 + k24\).

\(0 \le t < 24\) nên k = 0.

Với k = 0 thì t = 12.

Vậy vào lúc 12 giờ thì chiều cao mực nước biển là 12 m.

Trả lời: 12.

Lời giải

\(s = 4,3 \Leftrightarrow 8,6\sin \left( {8t + \frac{\pi }{2}} \right) = 4,3\)\( \Leftrightarrow \sin \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)\( \Leftrightarrow 8t + \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \)\( \Leftrightarrow t = - \frac{\pi }{{24}} + k\frac{\pi }{4}\).

\(t \in \left[ {0;2} \right]\) nên \(0 \le - \frac{\pi }{{24}} + k\frac{\pi }{4} \le 2\)\( \Leftrightarrow \frac{1}{6} \le k \le \frac{8}{\pi } + \frac{1}{6}\).

\(k \in \mathbb{Z}\) nên k = 1; k = 2.

Vậy có 2 thời điểm.

Trả lời: 2.

Câu 5

A. \(x = \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\).                                                             
B. \(x = - \frac{\pi }{6} + k2\pi ,\,\,k \in \mathbb{Z}\).                          
C. \(x = \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\).                                                             
D. \(x = \frac{{5\pi }}{6} + k2\pi ,\,\,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{\pi }{9}\).          
B. \( - \frac{\pi }{6}\).                 
C. \(\frac{\pi }{6}\).                                               
D. \( - \frac{\pi }{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{\pi }{3}\).      
B. \(0\).                             
C. \(\frac{\pi }{4}\).                                               
D. \(\frac{{2\pi }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP