Câu hỏi:

14/09/2025 63 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.

a) Giao tuyến (SAB) và (SCD) là đường thẳng đi qua S và song song với AB.

b) Giao tuyến (SAD) và (SBC) là đường thẳng đi qua S và song song với AB.

c) Gọi M Î SC, giao tuyến của (ABM) và (SCD) là đường thẳng đi qua M và song song với AB.

d) Gọi N Î SB, giao tuyến của (SAB) và (NCD) là đường thẳng đi qua N và song song với AB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Tứ giác ABCD là hình bình hành nên AB // CD; AD // BC.

CCCCCCCC (ảnh 1)

a) Ta có \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\S \in \left( {SAB} \right) \cap \left( {SCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Sx = \left( {SAB} \right) \cap \left( {SCD} \right)\\Sx//AB//CD\end{array} \right.\).

b) Ta có \(\left\{ \begin{array}{l}AD//BC\\AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\S \in \left( {SAD} \right) \cap \left( {SBC} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Sy = \left( {SAD} \right) \cap \left( {SCD} \right)\\Sy//AD//BC\end{array} \right.\).

c) \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {MAB} \right)\\CD \subset \left( {SCD} \right)\\M \in \left( {MAB} \right) \cap \left( {SCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Mt = \left( {MAB} \right) \cap \left( {SCD} \right)\\Mt//AB//CD\end{array} \right.\).

d) Ta có \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {NCD} \right)\\N \in \left( {SAB} \right) \cap \left( {NCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Nz = \left( {SAB} \right) \cap \left( {NCD} \right)\\Nz//AB//CD\end{array} \right.\).

Đáp án: a) Đúng;   b) Sai; c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

CCCCCC (ảnh 1)

Ta có NP // AB.

Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).

Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).

Trả lời: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. đường thẳng qua \(S\) và song song với \(AB\).
B. đường thẳng qua \(S\) và song song với \(AD\).
C. đường thẳng qua \(M\) và song song với \(CD\).
D. đường thẳng qua \(M\) và song song với \(AD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP