Câu hỏi:

14/09/2025 33 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, O là giao điểm của AC và BD.

a) Giao điểm của đường thẳng SA và (ABCD) là điểm D.

b) Giao điểm của đường thẳng BD và (SAC) là trung điểm của đoạn thẳng AC.

c) Giao điểm của đường thẳng SO và (ABNM) là điểm D.

d) Gọi E là giao điểm của DM và mặt phẳng (SBC). Khi đó SE = 2BC.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giao điểm của đường thẳng SA và (ABCD) là điểm D. (ảnh 1)

a) Có SA Ç (ABCD) = {A}.

b) Có O Î BD và O Î AC Ì (SAC) Þ BD Ç (SAC) = {O}.

c) Có S Î SO và S Î AM Ì (ABNM) Þ SO Ç (ABNM) = {S}.

d) Ta có \(\left\{ \begin{array}{l}S \in \left( {SAD} \right) \cap \left( {SBC} \right)\\AD//BC\\AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = Sy\left( {Sy//AD//BC} \right)\).

Trong mặt phẳng (SAD), gọi E = Sy Ç DM.

Ta có \(\left\{ \begin{array}{l}E \in Sy \subset \left( {SBC} \right)\\E \in DM\end{array} \right. \Rightarrow E = DM \cap \left( {SBC} \right)\).

Vì M là trung điểm của SA và SE // AD nên tứ giác SEAD là hình bình hành Þ SE = AD = BC.

Đáp án: a) Sai;   b) Đúng; c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

CCCCCC (ảnh 1)

Ta có NP // AB.

Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).

Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).

Trả lời: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. đường thẳng qua \(S\) và song song với \(AB\).
B. đường thẳng qua \(S\) và song song với \(AD\).
C. đường thẳng qua \(M\) và song song với \(CD\).
D. đường thẳng qua \(M\) và song song với \(AD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP