Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,N\) lần lượt là trọng tâm của hai tam giác \(\Delta SAB\) và \(\Delta SAD\). Gọi \(K\) là trung điểm của \(SD\).
a) Tìm giao tuyến d của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
b) Chứng minh rằng : \(MN//BD\).
c) Tìm giao điểm của đường thẳng \(KB\) với mặt phẳng \(\left( {SAC} \right)\).
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,N\) lần lượt là trọng tâm của hai tam giác \(\Delta SAB\) và \(\Delta SAD\). Gọi \(K\) là trung điểm của \(SD\).
a) Tìm giao tuyến d của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
b) Chứng minh rằng : \(MN//BD\).
c) Tìm giao điểm của đường thẳng \(KB\) với mặt phẳng \(\left( {SAC} \right)\).
Quảng cáo
Trả lời:

a) \[\left\{ \begin{array}{l}S \in (SAB) \cap (SCD)\\AB//CD\\AB \subset (SAB),CD \subset (SCD)\end{array} \right.\]
\[ \Rightarrow (SAB) \cap (SCD) = d\], d qua S và d // AB, d // CD.
b) Gọi I là trung điểm của SA.
Do M, N lần lượt là trọng tâm các tam giác SAB và SAD nên
\[\frac{{IM}}{{IB}} = \frac{{IN}}{{ID}} = \frac{1}{3}\] và \[MN,BD \subset (IBD)\]\[ \Rightarrow MN//BD\].
c) Gọi \[O = AC \cap BD,J = BK \cap SO\]
\[ \Rightarrow \left\{ \begin{array}{l}J \in BK\\J \in SO,SO \subset (SAC)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}J \in BK\\J \in (SAC)\end{array} \right. \Rightarrow J = BK \cap (SAC)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).
Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),
Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).
Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).
Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).
Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).
b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).
Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)
Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)
Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).
Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).
Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).
Lời giải
Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\) và \({u_n} = 2048\).
\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)
\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)
Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.