Hình nào dưới đây biểu diễn tất cả các nghiệm của phương trình \[2x + y = 3?\]
Hình nào dưới đây biểu diễn tất cả các nghiệm của phương trình \[2x + y = 3?\]




Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[2x + y = 3\] suy ra \[y = 3--2x.\]
Do đó, nghiệm của phương trình \[2x + y = 3\] được biểu diễn trên đường thẳng \[y = 3--2x.\]
Nhận thấy đường thẳng \[y = 3--2x\] đi qua các điểm \[\left( {0\,;\,\,3} \right)\] và \(\left( { - \frac{3}{2};0} \right)\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Lời giải
Hướng dẫn giải
Đáp án: a) Sai. b) Đúng. c) Sai. d) Sai.
a) Sai. Ta có: \(m\left( {5x - 2} \right) < 1\)
\[5mx - 2m - 1 < 0\]
Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(5m \ne 0\) hay \(m \ne 0\).
Do đó ý a) là sai.
b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(5x - 2 < 1\) hay \(5x < 3\) nên \(x < \frac{3}{5}\).
Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\). Do đó ý b) là đúng.
c) Sai. Khi \(m = - 1,\) bất phương trình đã cho trở thành: \( - 5x + 2 < 1\) hay \( - 5x < - 1\) nên \[x > \frac{1}{5}\].
Như vậy, khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \[x > \frac{1}{5}\]. Do đó ý c) là sai.
d) Sai. Khi \(m = - 2,\) bất phương trình đã cho trở thành: \( - \,10x + 4 < 1\) hay \( - 10x < - 3\) nên \(x > \frac{3}{{10}}\).
Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là 1. Do đó ý d) là sai.
Lời giải
Hướng dẫn giải
⦁ Gọi \(x,\,\,y\) lần lượt là độ dài hai cạnh của mảnh vườn hình chữ nhật \(\left( {x > 0,\,\,y > 0} \right).\)
Số mét rào cần rào ba cạnh còn lại của mảnh vườn là: \(2x + y\) (mét).
Diện tích mảnh vườn là: \(xy\) (m2).
⦁ Chứng minh bất đẳng thức: \[ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\] với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) ta được:
\[xy = 2 \cdot x \cdot \frac{y}{2} \le 2 \cdot {\left( {\frac{{x + \frac{y}{2}}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{2x + y}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{100}}{2}} \right)^2} = 1\,\,250{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Dấu “=” xảy ra khi và chỉ khi \(x = \frac{y}{2}\) và \(2x + y = 100\) hay \(2 \cdot \frac{y}{2} + y = 100\) tức là \(y = 50\), \(x = 25.\)
Vậy diện tích lớn nhất của mảnh vườn là \(1\,\,250{\rm{\;}}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.