Câu hỏi:

18/09/2025 69 Lưu

Phát biểu “\(a\) không nhỏ hơn \(b\)” được biểu diễn bằng bất đẳng thức nào dưới đây?

A. \(a < b.\)                   
B. \(a \ge b.\)                
C. \(a \le b.\)                 
D. \(a > b.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Phát biểu “\(a\) không nhỏ hơn \(b\)” tức là “\(a\) lớn hơn hoặc bằng \(b\)” được biểu diễn như sau: \(a \ge b.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị của \(a\)\(b\) để cặp số \[\left( { - 2;\,\,3} \right)\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ax + y = 5}\\{3x + by = 0}\end{array}} \right.\)

A. \(\left( {a;\,\,b} \right) = \left( { - 3;\,\,3} \right)\).                       
B. \(\left( {a;\,\,b} \right) = \left( { - 2;\,\,1} \right)\).                       
C. \(\left( {a;\,\,b} \right) = \left( {2;\,\, - 4} \right)\).                       
D. \(\left( {a;\,\,b} \right) = \left( { - 1;\,\,2} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình, ta thay \(x = - 2\)\(y = 3\) vào hệ phương trình, ta được: \(\left\{ {\begin{array}{*{20}{l}}{a \cdot \left( { - 2} \right) + 3 = 5}\\{3 \cdot \left( { - 2} \right) + b \cdot 3 = 0}\end{array}} \right.\)

Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{ - 2a = 2}\\{ - 6 + 3b = 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2.}\end{array}} \right.\)

Vậy, để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình thì \(a = - 1\)\(b = 2\).

Câu 2

A. \(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).                                      
B. \(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).                   
C. \(\left( {x;\,\,0} \right)\) với \(x \in \mathbb{R}\).                                      
D. \(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Từ phương trình \(0x + 7y = 14\) ta có \(7y = 14\) suy ra \(y = 2\).

Như vậy, phương trình đã cho có nghiệm tổng quát là \(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x \ne 1;{\rm{ }}x \ne - 3\].                        
B. \[x \ne 2;{\rm{ }}x \ne 1\].                                
C. \[x \ne - 3;{\rm{ }}x \ne --2\].                      
D. \(x \ne - 2;{\rm{ }}x \ne 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP