Tìm tổng các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\(x{\rm{KN}}{{\rm{O}}_3} \to 2{\rm{KN}}{{\rm{O}}_2} + y{{\rm{O}}_2}.\)
Tìm tổng các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\(x{\rm{KN}}{{\rm{O}}_3} \to 2{\rm{KN}}{{\rm{O}}_2} + y{{\rm{O}}_2}.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: 3.
a) Vì số nguyên tử của \({\rm{K,}}\,\,{\rm{N}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\x = 2\\3x = 2 \cdot 2 + 2y\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 2\\3x = 4 + 2y.\end{array} \right.\)
Thay \(x = 2\) vào phương trình \(3x = 4 + 2y,\) ta được:
\(3 \cdot 2 = 4 + 2y,\) suy ra \(2y = 2\) nên \(y = 1.\)
Vậy \[x + y = 2 + 1 = 3.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình, ta thay \(x = - 2\) và \(y = 3\) vào hệ phương trình, ta được: \(\left\{ {\begin{array}{*{20}{l}}{a \cdot \left( { - 2} \right) + 3 = 5}\\{3 \cdot \left( { - 2} \right) + b \cdot 3 = 0}\end{array}} \right.\)
Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{ - 2a = 2}\\{ - 6 + 3b = 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2.}\end{array}} \right.\)
Vậy, để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình thì \(a = - 1\) và \(b = 2\).
Lời giải
Hướng dẫn giải
Đáp án: 2.
Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\)
\(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\)
\(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\)
\(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)
\(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\)
\(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\)
\({x^2} = 36\)
\(x = 6\) (thỏa mãn) hoặc \(x = - 6\) (thỏa mãn).
Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.