Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Với giá trị nào của \(x\) thì hai biểu thức \(A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\) và \(B = \frac{{x - 5}}{{9{x^2} - 1}}\) có cùng một giá trị?
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Với giá trị nào của \(x\) thì hai biểu thức \(A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\) và \(B = \frac{{x - 5}}{{9{x^2} - 1}}\) có cùng một giá trị?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 0.
Để hai biểu thức đã cho có cùng một giá trị thì \(A = B\), tức là \(\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\).
Điều kiện: \(x \ne \frac{1}{3};\,\,x \ne - \frac{1}{3}.\)
Giải phương trình:
\(\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\)
\(\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\)
\(\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\)
\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\]
\(9x - 3 - 6x - 2 = x - 5\)
\(2x = 0\)
\(x = 0\) (thỏa mãn).
Vậy \(x = 0\) thỏa mãn yêu cầu đề bài.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:
a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)
b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).
c) Phương trình \(0x = 1\) vô số nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:
a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)
b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).
c) Phương trình \(0x = 1\) vô số nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Lời giải
Hướng dẫn giải
Đáp án: a) Đúng. b) Đúng. c) Sai. d) Sai.
Giải hệ phương trình đã cho bằng phương pháp cộng đại số như sau:
Nhân hai vế của phương trình thứ hai với 2, ta được:
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được:
\(0x + 0y = 1\) hay \(0x = 1\).
Phương trình trên vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Câu 2
Tổng các nghiệm của phương trình \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\) là
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Giải phương trình:
\(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)
\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)
\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)
\(x = - 9\) hoặc \(x = 4\)
Do đó, phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).
Vậy tổng các nghiệm của phương trình đó là: \(4 + \left( { - 9} \right) = - 5.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
