Câu hỏi:

18/09/2025 120 Lưu

(1,5 điểm) Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\)

Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). (ảnh 1)

a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét).

b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). (ảnh 2)

Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của con dốc là 32 m.

b) Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

 Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:

a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)

b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).

c) Phương trình \(0x = 1\)số nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp cộng đại số như sau:

Nhân hai vế của phương trình thứ hai với 2, ta được: 

 2x6y=52x6y=4.

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được:

\(0x + 0y = 1\) hay \(0x = 1\).

Phương trình trên vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

Câu 2

A. 5.                              
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Giải phương trình:

\(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

 \(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

 \(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)

\(x = - 9\) hoặc \(x = 4\)

Do đó, phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).

Vậy tổng các nghiệm của phương trình đó là: \(4 + \left( { - 9} \right) = - 5.\)

Câu 4

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x\left( {x - 1} \right) = 0\).                         
B. \(x\left( {x + 1} \right) = 0\).                             
C. \(x = 0\).                   
D. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - 2x + 3y = 5.\]     
B. \[2x + 3y = 5.\]         
C. \[3x--2y = 5.\]          
D. \[2x--3y = 5.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP