Câu hỏi:

18/09/2025 56 Lưu

Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6\end{array} \right.?\]

A. \[\left( {6;\,\, - 6} \right)\].                            
B. \[\left( {6;\,\,6} \right)\].          
C. \[\left( { - \frac{{354}}{{13}};\,\,\frac{{402}}{{13}}} \right)\].   
D. \[\left( {\frac{{354}}{{13}};\,\,\frac{{402}}{{13}}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]

Với MTCT phù hợp, ta bấm lần lượt các phím:

 

Trên màn hình cho kết quả \(x = 6,\) ta bấm tiếp phím  màn hình cho kết quả \(y = 6.\)

Vậy cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]

Cách 2. Thay \(x = 6;\,\,y = - 6\) vào hệ phương trình đã cho, ta được:

 \(\left\{ \begin{array}{l}3 \cdot 6 + 4 \cdot \left( { - 6} \right) = - 6\,\,\left( { \ne 42} \right)\\10 \cdot 6 - 9 \cdot \left( { - 6} \right) = 114\,\,\left( { \ne 6} \right).\end{array} \right.\)

Tương tự, thay giá trị của \(x\)\(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của cả hai phương trình trong hệ.

Vậy cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]

Cách 3. Giải hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]

Nhân hai vế của phương trình thứ nhất với \(10\) và nhân hai vế của phương trình thứ hai với \(3,\) ta được hệ phương trình mới \[\left\{ \begin{array}{l}30x + 40y = 420\\30x - 27y = 18.\end{array} \right.\]

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:

\(67y = 402\), suy ra \(y = 6\).

Thay \(y = 6\) vào phương trình \[3x + 4y = 42,\] ta được:

\[3x + 4 \cdot 6 = 42\] hay \[3x = 18\] suy ra \(x = 6.\)

Do đó, hệ phương trình đã cho có nghiệm duy nhất là \(\left( {6;\,\,6} \right)\).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 4.

Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\)

\(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\)

\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\)

\({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\)

\({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\)

\({x^2} - 8x + 16 = 0\)

\({\left( {x - 4} \right)^2} = 0\)

\(x - 4 = 0\)

\(x = 4\) (thỏa mãn).

Vậy nghiệm của phương trình đã cho là \(x = 4\).

Lời giải

Hướng dẫn giải

Đáp án: 6.

Ta có \(1 + \frac{{x + 4}}{5} \le x - \frac{{x + 3}}{3}\)

\(\frac{{5 + x + 4}}{5} \le \frac{{3x - x - 3}}{3}\)

\(\frac{{x + 9}}{5} \le \frac{{2x - 3}}{3}\)

\[3\left( {x + 9} \right) \le 5\left( {2x - 3} \right)\]

\[3x + 27 \le 10x - 15\]

\[10x - 3x \le 27 + 15\]

\[7x \ge 42\]

\[x \ge 6\]

Vậy nghiệm của bất phương trình là \[x \ge 6.\]

Câu 6

A. \(x\left( {x - 1} \right)\left( {x + 1} \right)\). 
B. \({\left( {x - 1} \right)^2}.\)                  
C. \({\left( {x + 1} \right)^2}\).                          
D. \(\left( {x - 1} \right)\left( {x + 1} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x + y > 8\].            
B. \[0x + 5 \ge 0\].        
C. \[2x-3 > 4\;\].         
D. \[{x^2} - 6x + 1 \le 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP