Câu hỏi:

18/09/2025 2 Lưu

Biết rằng \(AB = 1\;{\rm{dm}}{\rm{,}}\;IK = 2\;{\rm{cm}}{\rm{.}}\) Tính tỉ số \(\frac{{IK}}{{AB}}.\)

A. \(2.\) 

B. \(\frac{1}{2}\)  
C. \(5.\)  
D. \(\frac{1}{5}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(AB = 1\;{\rm{dm}} = 10\;{\rm{cm}}{\rm{.}}\)  Do đó, \(\frac{{IK}}{{AB}} = \frac{2}{{10}} = \frac{1}{5}.\) Vậy \(\frac{{IK}}{{AB}} = \frac{1}{5}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(6\)

Độ dài đoạn thẳng \(AK\) bằng bao nhiêu \({\rm{cm?}}\) (ảnh 1)

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

Vì \(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\) Vì \(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\) có \(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\) có \(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án: \(3\)

Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)). (ảnh 1)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)

Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)

Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)

Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)