Cho \(\Delta ABC\) có \(AB = 4\;{\rm{cm}},\;AC = 6\;{\rm{cm}}\) và đường phân giác \(AD\;\left( {D \in BC} \right).\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(E.\) Khi đó, \(AC = ...AE.\) Tìm số thích hợp để điền vào “…”.
Quảng cáo
Trả lời:

Đáp án: \(2,5\)

\(\Delta ABC\) có \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{4}{6} = \frac{2}{3}.\)
\(\Delta ABC\) có \(DE\;{\rm{//}}\;BC\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{EC}} = \frac{{BD}}{{DC}} = \frac{2}{3}.\) Do đó: \(\frac{{AE}}{{EC + AE}} = \frac{2}{{3 + 2}} = \frac{2}{5}.\)
Suy ra \(\frac{{AE}}{{AC}} = \frac{2}{5}.\) Do đó, \(AC = 2,5AE.\)
Vậy số thích hợp điền vào “…” là \(2,5.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)
Lời giải
Đáp án đúng là: D

có \(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)
Vì \(D\) là giao điểm của hai đường phân giác \(AE\) và \(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)\(\Delta ABC\)
Câu 2
A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)
Lời giải
Đáp án đúng là: A

Vì \(AD\) là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)
Câu 3
A. \(\frac{2}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\widehat {DAC} = 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.