Cho tứ giác \(ABCD\) có \(AD \bot DC\) tại \(D,\;\widehat A = 3\widehat C.\) Số đo góc ngoài tại đỉnh \(B\) của tứ giác \(ABCD\) bằng \(70^\circ .\)
a) \(\widehat {ABC} = 100^\circ .\)
b) \(\widehat {BCD} = 40^\circ .\)
c) \(\widehat {BAD} = 120^\circ .\)
d) Tứ giác \(ABCD\) có hai cặp cạnh kề vuông góc với nhau.
Cho tứ giác \(ABCD\) có \(AD \bot DC\) tại \(D,\;\widehat A = 3\widehat C.\) Số đo góc ngoài tại đỉnh \(B\) của tứ giác \(ABCD\) bằng \(70^\circ .\)
a) \(\widehat {ABC} = 100^\circ .\)
b) \(\widehat {BCD} = 40^\circ .\)
c) \(\widehat {BAD} = 120^\circ .\)
d) Tứ giác \(ABCD\) có hai cặp cạnh kề vuông góc với nhau.Quảng cáo
Trả lời:


a) Sai.
Ta có: \(\widehat {ABC} = 180^\circ - 70^\circ = 110^\circ .\) Vậy \(\widehat {ABC} = 110^\circ .\)
b) Đúng.
Vì \(AD \bot DC\) nên \(\widehat {ADC} = 90^\circ .\) Đặt \(\widehat {BCD} = x\;\left( {x > 0} \right)\) thì \(\widehat {BAD} = 3x.\)
Tứ giác \(ABCD\) có: \[\widehat {DAB} + \widehat {CBA} + \widehat {BCD} + \widehat {CDA} = 360^\circ \]
\(3x + 110^\circ + x + 90^\circ = 360^\circ \)
\(4x = 160^\circ \)
\(x = 40^\circ .\)
Do đó, \(\widehat {BCD} = 40^\circ .\)
c) Đúng.
Vì \(\widehat {BCD} = 40^\circ \) nên \(\widehat {BAD} = 3 \cdot 40^\circ = 120^\circ .\) Vậy \(\widehat {BAD} = 120^\circ .\)
d) Sai.
Vì \(AD \bot DC\) nên hai cạnh kề \(AD\) và \(DC\) vuông góc với nhau.
Vì \(\widehat {BCD} = 40^\circ ,\;\widehat {BAD} = 120^\circ ,\;\widehat {ABC} = 110^\circ \) nên các cặp cạnh \(AB\) và \(BC,\;BC\) và \(CD,\;AD\) và \(AB\) không vuông góc với nhau. Vậy tứ giác \(ABCD\) có một cặp cạnh kề vuông góc với nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Sai.
Tứ giác \(ABCD\) có hai đường chéo là \(AC\) và \(BD.\) Do đó, \(O\) là giao điểm của \(AC\) và \(BD.\)
b) Đúng.
Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)
c) Sai.
Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)
d) Sai.
Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:
\(OA + OB + OC + OD > AB + CD\)
\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)
\(AC + BD > AB + CD.\)
Lời giải
Đáp án: \(2\)

Vì \(CE\) là tia phân giác của \(\widehat {BCD}\) nên \(\widehat {ECD} = \frac{1}{2}\widehat {BCD}.\)
Vì \(DE\) là tia phân giác của \(\widehat {ADC}\) nên \(\widehat {EDC} = \frac{1}{2}\widehat {ADC}.\)
Tam giác \(CDE\) có: \(\widehat {CED} + \widehat {CDE} + \widehat {ECD} = 180^\circ \) (tổng ba góc của một tam giác).
Nên \(\widehat {CED} = 180^\circ - \left( {\widehat {CDE} + \widehat {ECD}} \right) = 180^\circ - \frac{1}{2}\left( {\widehat {BCD} + \widehat {ADC}} \right) = 180^\circ - \frac{1}{2}\left[ {360^\circ - \left( {\widehat A + \widehat B} \right)} \right] = \frac{1}{2}\left( {\widehat A + \widehat B} \right).\)
Do đó, \(2\widehat {CED} = \widehat A + \widehat B.\) Vậy số thích hợp điền vào dấu “…” là \(2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.