Câu hỏi:

18/09/2025 47 Lưu

Cho hình thoi \(ABCD\). Biết đường cao \(AH\) kẻ từ đỉnh \(A\) đến cạnh \(CD\) chia cạnh đó thành hai đoạn bằng nhau.

Cho hình thoi ABCD. Biết đường cao AH kẻ từ đỉnh A đến cạnh CD chia cạnh đó thành hai đoạn bằng nhau (ảnh 1)
Số đo các góc của hình thoi đó là:

A. \(\widehat B = \widehat D = 80^\circ ,\widehat A = \widehat C = 100^\circ .\)                          

B. \(\widehat B = \widehat D = 120^\circ ,\widehat A = \widehat C = 60^\circ .\)

C. \(\widehat B = \widehat C = 60^\circ ,\widehat A = \widehat D = 120^\circ .\)    
D. \(\widehat B = \widehat D = 60^\circ ,\widehat A = \widehat C = 120^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Do đường cao \(AH\) kẻ từ đỉnh \(A\) đến cạnh \(CD\) chia cạnh đó thành hai đoạn bằng nhau nên tam giác \(ADC\) cân tại \(A\).

Mà ta lại có \(AD = DC\) nên \(\Delta ADC\) là tam giác đều.

Do đó, \(\widehat {ADC} = 60^\circ .\)

\(ABCD\) là hình thoi nên \(\widehat {ADC} = \widehat {ABC} = 60^\circ \)\(\widehat {CAD} = \widehat {BCD} = 180^\circ - 60^\circ = 120^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 75

Cho hình thoi ABCD có chu vi bằng 24cm đường cao AH bằng 3cm. Hỏi số đo của góc DCA bằng bao nhiêu độ? (ảnh 1)

Vì chu vi hình thoi là 24 cm nên độ dài cạnh của hình thoi đó là: \(24:4{\rm{ }} = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).

Xét tam giác \(AHB,\)\(AH = \frac{1}{2}AB\) nên \(\widehat {ABH} = 30^\circ \) (tính chất).

Suy ra \(\widehat {DAB} = 180^\circ - \widehat {ABC} = 180^\circ - 30^\circ = 150^\circ \) (Do \(ABCD\) là hình thoi)

Suy ra \(\widehat {DAB} = \widehat {DCB} = 150^\circ \)\(\widehat {ABC} = \widehat {CDA} = 30^\circ \).

Lại có, \(CA\) tia phân giác của \(\widehat {DCB}\) nên ta có \(\widehat {DCA} = \widehat {ACB} = \frac{1}{2}\widehat {DCB} = \frac{1}{2} \cdot 150^\circ = 75^\circ \).

Lời giải

Đáp án: \(150\)

Tứ giác \(ABCD\)\(O\) là giao điểm của \(AC\)\(BD.\) \(O\) là trung điểm của \(AC\)\(BD.\)

Do đó, tứ giác \(ABCD\) là hình bình hành. Suy ra \(DC = AB = 150\;{\rm{m}}{\rm{.}}\) Vậy \(AB = 150\;{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP