Câu hỏi:

20/09/2025 120 Lưu

Cho đường thẳng \(\left( d \right):y = - 2x + 3\). Tìm \(m\) để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( { - m; - 3} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \( - 3\).

Thay tọa độ điểm \(A\left( { - m; - 3} \right)\) khi \( - 2.\left( { - m} \right) + 3 = - 3\) hay \(2m = - 6\) nên \(m = - 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 60.

Hình thang cân \(ABCD\) \(\left( {AB\,{\rm{//}}\,CD} \right)\) có \(\widehat C = 60^\circ \). Tính \(\widehat A - \widehat C\) (đơn vị: độ). (ảnh 1)

Vì \[ABCD\] là hình thang cân \(\left( {AB\,{\rm{//}}\,CD} \right)\) nên \(\widehat A = \widehat B\); \(\widehat C = \widehat D.\)

Hình thang \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \) hay \[2\widehat A + 2\widehat C = 360^\circ \] nên \[\widehat A + \widehat C = 180^\circ .\]

Suy ra \[\widehat A = 180^\circ - \widehat C = 180^\circ - 60^\circ = 120^\circ .\]

Do đó \(\widehat A - \widehat C = 120^\circ - 60^\circ = 60^\circ .\)

Lời giải

Hướng dẫn giải

Đáp số: 200.

Tứ giác \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).

Suy ra \[\widehat A + \widehat B = 360^\circ - \widehat C - \widehat D = 360^\circ - 50^\circ - 60^\circ = 250^\circ .\]

Ta có \(\widehat A:\widehat B = 3:2\) nên \[\frac{{\widehat A}}{{\widehat B}} = \frac{3}{2}\] hay \[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2} = \frac{{\widehat A + \widehat B}}{{3 + 2}} = \frac{{250^\circ }}{5} = 50^\circ .\]

Suy ra \[\widehat A = 3 \cdot 50^\circ = 150^\circ \,;\,\,\widehat B = 2 \cdot 50^\circ = 100^\circ .\]

Do đó \(2\widehat A - \widehat B = 2 \cdot 150^\circ - 100^\circ = 200^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP