(1,5 điểm) Một chiếc lều có dạng hình chóp tứ giác đều ở trại hè của học sinh có kích thước như hình bên.

a) Tính thể tích không khí bên trong chiếc lều.
b) Tính số tiền mua vải phủ bốn phía và trải nền đất cho chiếc lều (coi các mép nối không đáng kể). Biết chiều cao của mặt bên xuất phát từ đỉnh của chiếc lều là \(3,18\;\;{\rm{m}}\) và giá vải là \(15\,\,000\) đồng/m2. Ngoài ra, nếu mua vải với hóa đơn trên \(20\) m2 thì được giảm giá \(5\% \) trên tổng hóa đơn.
(1,5 điểm) Một chiếc lều có dạng hình chóp tứ giác đều ở trại hè của học sinh có kích thước như hình bên.

a) Tính thể tích không khí bên trong chiếc lều.
b) Tính số tiền mua vải phủ bốn phía và trải nền đất cho chiếc lều (coi các mép nối không đáng kể). Biết chiều cao của mặt bên xuất phát từ đỉnh của chiếc lều là \(3,18\;\;{\rm{m}}\) và giá vải là \(15\,\,000\) đồng/m2. Ngoài ra, nếu mua vải với hóa đơn trên \(20\) m2 thì được giảm giá \(5\% \) trên tổng hóa đơn.Quảng cáo
Trả lời:
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Tứ giác \[ADHE\] là hình gì? Vì sao? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/26-1758293616.png)
a) Vì \(\Delta ABC\) vuông tại \(A\) nên \(\widehat {BAC} = 90^\circ \) hay \(\widehat {DAE} = 90^\circ \).
Ta có \(HD \bot AB\); \(HE \bot AC\) nên \(\widehat {HDA} = 90^\circ \); \(\widehat {HEA} = 90^\circ \).
Tứ giác \(ADHE\) có \[\widehat {DAE} = \widehat {HDA} = \widehat {HEA} = 90^\circ \] nên tứ giác \(ADHE\) là hình chữ nhật.
b) Xét \(\Delta AHD\) vuông tại \(D\), áp dụng định lý Pythagore, ta có: \(A{H^2} = A{D^2} + D{H^2}\)
Suy ra \(D{H^2} = A{H^2} - A{D^2} = {5^2} - {4^2} = 9\). Do đó \(DH = 3\,\,\left( {{\rm{cm}}} \right){\rm{.}}\)
Tứ giác \(ADHE\) là hình chữ nhật nên ta có: \({S_{ADHE}} = AD\,.\,DH = 4\,.\,3 = 12\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích tứ giác \(ADHE\) bằng \(12\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
c) Xét tứ giác \(BKIH\) có \(D\) là trung điểm của hai đường chéo \(BI\) và \(HK\) nên \(BKIH\) là hình bình hành (dấu hiệu nhận biết).
Do đó \(KI\,{\rm{//}}\,BH.\)
Mà \(AH \bot BH\) suy ra \(KI \bot AH.\)
Xét \(\Delta AHK\) có hai đường cao \(AD,\,\,KI\) \(\left( {AD \bot KH;\,\,KI \bot AH} \right)\) cắt nhau tại \(I\) nên \(I\) là trực tâm của tam giác \(AKH\), suy ra \(HI \bot AK.\)
Lời giải
Hướng dẫn giải
Vì tấm lưới dài \(500\,\,{\rm{m}}\), hay chính là chu vi của mảnh vườn hình chữ nhật \(ABCD\) trừ khu nhà kho \[EF = 100\,\,{\rm{m}}\] bằng \(500\,\,{\rm{m}}\).
Suy ra chu vi của mảnh vườn là \(600\,\,{\rm{m}}\), nên nửa chu vi mảnh vườn là \(300{\rm{\;m}}.\)
Do đó chiều rộng của mảnh vườn rào được theo chiều dài \(x{\rm{\;(m)}}\) là: \(300 - x{\rm{\;(m)}}{\rm{.}}\)
Diện tích mảnh vườn hình chữ nhật là:
\[S = x \cdot \left( {300 - x} \right)\]\( = - {x^2} + 300x\)
\( = - {x^2} + 2 \cdot x \cdot 150 - {150^2} + {150^2}\)
\( = - {\left( {x - 150} \right)^2} + 22\,\,500\)
Với mọi \(x > 0,\) ta có \({\left( {x - 150} \right)^2} \ge 0\) nên \( - {\left( {x - 150} \right)^2} \le 0\) hay \( - {\left( {x - 150} \right)^2} + 22\,\,500 \le 22\,\,500\).
Dấu “=” xảy ra khi \(x = 150\).
Vậy diện tích mảnh vườn lớn nhất là \(22\,\,500{\rm{\;}}{{\rm{m}}^2}\) khi \(x = 150{\rm{\;m}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


