Bác Bảy có một trang trại lớn để trồng rau và chăn nuôi gia cầm. Bác dự định mua một tấm lưới thép B40 để rào bao quanh khu vực nuôi gia cầm của trang trại với thiết kế có dạng hình chữ nhật \(ABCD\) (như hình mô tả ở bên). Biết rằng, bác Bảy không rào xung quanh khu vực nhà kho và vị trí nhà kho cố định. Với số tiền của mình, bác Bảy chỉ mua được tấm lưới có chiều dài \(500\,\,{\rm{m}}\). Hỏi bác Bảy sẽ dựng rào chắn như thế nào để diện tích khu nuôi gia cầm là lớn nhất?

Bác Bảy có một trang trại lớn để trồng rau và chăn nuôi gia cầm. Bác dự định mua một tấm lưới thép B40 để rào bao quanh khu vực nuôi gia cầm của trang trại với thiết kế có dạng hình chữ nhật \(ABCD\) (như hình mô tả ở bên). Biết rằng, bác Bảy không rào xung quanh khu vực nhà kho và vị trí nhà kho cố định. Với số tiền của mình, bác Bảy chỉ mua được tấm lưới có chiều dài \(500\,\,{\rm{m}}\). Hỏi bác Bảy sẽ dựng rào chắn như thế nào để diện tích khu nuôi gia cầm là lớn nhất?

Quảng cáo
Trả lời:
Hướng dẫn giải
Vì tấm lưới dài \(500\,\,{\rm{m}}\), hay chính là chu vi của mảnh vườn hình chữ nhật \(ABCD\) trừ khu nhà kho \[EF = 100\,\,{\rm{m}}\] bằng \(500\,\,{\rm{m}}\).
Suy ra chu vi của mảnh vườn là \(600\,\,{\rm{m}}\), nên nửa chu vi mảnh vườn là \(300{\rm{\;m}}.\)
Do đó chiều rộng của mảnh vườn rào được theo chiều dài \(x{\rm{\;(m)}}\) là: \(300 - x{\rm{\;(m)}}{\rm{.}}\)
Diện tích mảnh vườn hình chữ nhật là:
\[S = x \cdot \left( {300 - x} \right)\]\( = - {x^2} + 300x\)
\( = - {x^2} + 2 \cdot x \cdot 150 - {150^2} + {150^2}\)
\( = - {\left( {x - 150} \right)^2} + 22\,\,500\)
Với mọi \(x > 0,\) ta có \({\left( {x - 150} \right)^2} \ge 0\) nên \( - {\left( {x - 150} \right)^2} \le 0\) hay \( - {\left( {x - 150} \right)^2} + 22\,\,500 \le 22\,\,500\).
Dấu “=” xảy ra khi \(x = 150\).
Vậy diện tích mảnh vườn lớn nhất là \(22\,\,500{\rm{\;}}{{\rm{m}}^2}\) khi \(x = 150{\rm{\;m}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
![Tứ giác \[ADHE\] là hình gì? Vì sao? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/26-1758293616.png)
a) Vì \(\Delta ABC\) vuông tại \(A\) nên \(\widehat {BAC} = 90^\circ \) hay \(\widehat {DAE} = 90^\circ \).
Ta có \(HD \bot AB\); \(HE \bot AC\) nên \(\widehat {HDA} = 90^\circ \); \(\widehat {HEA} = 90^\circ \).
Tứ giác \(ADHE\) có \[\widehat {DAE} = \widehat {HDA} = \widehat {HEA} = 90^\circ \] nên tứ giác \(ADHE\) là hình chữ nhật.
b) Xét \(\Delta AHD\) vuông tại \(D\), áp dụng định lý Pythagore, ta có: \(A{H^2} = A{D^2} + D{H^2}\)
Suy ra \(D{H^2} = A{H^2} - A{D^2} = {5^2} - {4^2} = 9\). Do đó \(DH = 3\,\,\left( {{\rm{cm}}} \right){\rm{.}}\)
Tứ giác \(ADHE\) là hình chữ nhật nên ta có: \({S_{ADHE}} = AD\,.\,DH = 4\,.\,3 = 12\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích tứ giác \(ADHE\) bằng \(12\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
c) Xét tứ giác \(BKIH\) có \(D\) là trung điểm của hai đường chéo \(BI\) và \(HK\) nên \(BKIH\) là hình bình hành (dấu hiệu nhận biết).
Do đó \(KI\,{\rm{//}}\,BH.\)
Mà \(AH \bot BH\) suy ra \(KI \bot AH.\)
Xét \(\Delta AHK\) có hai đường cao \(AD,\,\,KI\) \(\left( {AD \bot KH;\,\,KI \bot AH} \right)\) cắt nhau tại \(I\) nên \(I\) là trực tâm của tam giác \(AKH\), suy ra \(HI \bot AK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


