Câu hỏi:

20/09/2025 17 Lưu

Bánh ú lá tro (hay còn gọi là bánh tro) là một trong những loại bánh truyền thống của Việt Nam (Hình a). Biết rằng bánh tro có dạng hình chóp tam giác đều với các kích thước như Hình b.

Hãy tính thể tích của mỗi chiếc bánh tro (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 1)

Hãy tính thể tích của mỗi chiếc bánh tro (làm tròn kết quả đến chữ số thập phân thứ nhất).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(H\) là chân đường cao kẻ từ \(A\) đến \(BC.\)

Bánh tro có dạng hình chóp tam giác đều \(S.ABC\) nên đáy \(ABC\) là tam giác đều. Suy ra \(AC = BC = AB = 5{\rm{\;cm}}.\)

Khi đó ta cũng có đường cao \(AH\) đồng thời là đường trung tuyến nên \(HB = HC = \frac{1}{2}BC = \frac{1}{2} \cdot 5 = 2,5{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Xét \(\Delta ABH\) vuông tại \(H\) (do \(AH \bot BC)\) có:

\(A{B^2} = A{H^2} + B{H^2}\) (định lí Pythagore)

Hãy tính thể tích của mỗi chiếc bánh tro (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 2)

Do đó \(A{H^2} = A{B^2} - B{H^2} = {5^2} - 2,{5^2} = 25 - 6,25 = 18,75 = \frac{{75}}{4}.\)

Suy ra \(AH = \sqrt {\frac{{75}}{4}} = \sqrt {\frac{{{5^2} \cdot {{\left( {\sqrt 3 } \right)}^2}}}{{{2^2}}}} = \sqrt {{{\left( {\frac{{5\sqrt 3 }}{2}} \right)}^2}} = \frac{{5\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\)

Diện tích đáy hình chóp tam giác đều là:

\({S_{ABC}} = \frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot \frac{{5\sqrt 3 }}{2} \cdot 5 = \frac{{25\sqrt 3 }}{4}{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Thể tích của hình chóp tam giác đều là:

\(V = \frac{1}{3}{S_{ABC}} \cdot SO = \frac{1}{3} \cdot \frac{{25\sqrt 3 }}{4} \cdot 4 = \frac{{25\sqrt 3 }}{3} \approx {\rm{14,4}}\,{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Vậy thể tích của chiếc bánh tro khoảng \[14,4{\rm{\;c}}{{\rm{m}}^3}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)

Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)

Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)

Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).

Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:

\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]

Lời giải

Hướng dẫn giải

e) Ta có \(E = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)

Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(E \ge \frac{{11}}{{16}}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x =  - 2.\)

Vậy giá trị nhỏ nhất của biểu thức \(E\) là \(\frac{{11}}{{16}}\) tại \(x =  - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Thống kê tổng số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định từ tháng 1 đến tháng 12 lần lượt là: \[34,4;{\rm{ }}27,5;{\rm{ }}49,4;{\rm{ }}108,2;{\rm{ }}88,8;{\rm{ }}186,6;{\rm{ }}190,7;\] \[151,7;\] \[133,2;\] \[165,0;\] \[126,2;\] \[102,1\] (đơn vị: giờ) (Nguồn: Tổng cục thống kê).

a) Lập bảng số liệu thống kê số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định theo mẫu sau:

Tháng

1

2

3

4

5

6

7

8

9

10

11

12

Tổng số giờ nắng (h)

?

?

?

?

?

?

?

?

?

?

?

?

b) Hãy hoàn thành biểu đồ hình bên dưới để nhận được biểu đồ đoạn thẳng biểu diễn tổng số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định.

Lập bảng số liệu thống kê số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định theo mẫu sau: (ảnh 1)

c) Tổng số giờ nắng tại trạm quan trắc Nam Định trong tháng nào cao nhất? Thấp nhất?

d) Hãy nhận xét về sự thay đổi số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định trong các khoảng thời gian: tháng 1 – tháng 2; tháng 2 – tháng 3; tháng 3 – tháng 4; tháng 4 – tháng 5; tháng 5 – tháng 6; tháng 6 – tháng 7; tháng 7 – tháng 8; tháng 8 – tháng 9; tháng 9 – tháng 10; tháng 10 – tháng 11; tháng 11 – tháng 12.

e) Một bài báo có nêu thông tin: “So với tháng 9, tổng số giờ nắng tại trạm quan trắc Nam Định trong tháng 10 tăng lên xấp xỉ 34%”. Thông tin của bài báo đó có chính xác không?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP