Cho hình chóp tam giác đều \(S.ABC\) có các mặt bên cũng là các tam giác đều. Gọi \(SO\) là đường cao của hình chóp, \(OC = 2\sqrt 3 {\rm{\;cm}}.\) Tính (làm tròn các kết quả đến chữ số thập phân thứ hai):

a) Độ dài các cạnh bên của hình chóp.
b) Diện tích xung quanh của hình chóp.
Cho hình chóp tam giác đều \(S.ABC\) có các mặt bên cũng là các tam giác đều. Gọi \(SO\) là đường cao của hình chóp, \(OC = 2\sqrt 3 {\rm{\;cm}}.\) Tính (làm tròn các kết quả đến chữ số thập phân thứ hai):
a) Độ dài các cạnh bên của hình chóp.
b) Diện tích xung quanh của hình chóp.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Ta có \(CM \bot AB\) và \(MA = MB = \frac{1}{2}CB.\)Vì \(SO\) là đường cao của hình chóp nên \(O\) là trọng tâm của tam giác \(ABC.\)
Do đó \(CM = \frac{3}{2}CO = \frac{3}{2} \cdot 2\sqrt 3 = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Áp dụng định lí Pythagore cho tam giác vuông \(CBM,\) ta có: \(C{B^2} = C{M^2} + M{B^2}\)
Suy ra \(C{M^2} = C{B^2} - M{B^2} = C{B^2} - {\left( {\frac{1}{2}CB} \right)^2} = \frac{3}{4}C{B^2}.\)
Do đó \({\left( {3\sqrt 3 } \right)^2} = \frac{3}{4}C{B^2}\) suy ra \(CB = 6{\rm{\;cm}}.\)
Vì các mặt của hình chóp \(S.ABC\) là các tam giác đều nên các cạnh bên của hình chóp có độ dài là \(6{\rm{\;cm}}.\)
b) Vì các tam giác \(SAB\) và \(ABC\) là các tam giác đều bằng nhau nên ta có \(SM = CM = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2}\left( {AB + BC + CA} \right) \cdot SM = \frac{1}{2} \cdot \left( {6 + 6 + 6} \right) \cdot 3\sqrt 3 = 27\sqrt 3 \approx 46,77{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Lời giải
a) \[A = {\left( {{x^2} - 2} \right)^2} + 2{\left( {x - 1} \right)^2} + \left( {2 - {x^2}} \right)\left( {2 + {x^2}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2\left( {{x^2} - 2x + 1} \right) + \left( {4 - {x^4}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2{x^2} - 4x + 2 + 4 - {x^4}\]
\[ = - 2{x^2} - 4x + 10\]\[ = - 2\left( {{x^2} + 2x - 5} \right)\]
\[ = - 2\left( {{x^2} + 2x + 1 - 6} \right)\]\[ = - 2{\left( {x + 1} \right)^2} + 12.\]
Với mọi \(x\), ta luôn có \[{\left( {x + 1} \right)^2} \ge 0,\] nên \[ - 2{\left( {x + 1} \right)^2} \le 0\], suy ra \[ - 2{\left( {x + 1} \right)^2} + 12 \le 12\]
Do đó \(A \le 12.\) Dấu xảy ra khi \[x = - 1\].
Vậy giá trị lớn nhất của biểu thức \(A\) là \(12\) khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.