Câu hỏi:

20/09/2025 29 Lưu

Cho hình chóp tam giác đều \(S.ABC\) có các mặt bên cũng là các tam giác đều. Gọi \(SO\) là đường cao của hình chóp, \(OC = 2\sqrt 3 {\rm{\;cm}}.\) Tính (làm tròn các kết quả đến chữ số thập phân thứ hai):

Độ dài các cạnh bên của hình chóp. (ảnh 1)

a) Độ dài các cạnh bên của hình chóp.

b) Diện tích xung quanh của hình chóp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \(CM \bot AB\)\(MA = MB = \frac{1}{2}CB.\)

\(SO\) là đường cao của hình chóp nên \(O\) là trọng tâm của tam giác \(ABC.\)

Do đó \(CM = \frac{3}{2}CO = \frac{3}{2} \cdot 2\sqrt 3 = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore cho tam giác vuông \(CBM,\) ta có: \(C{B^2} = C{M^2} + M{B^2}\)

Suy ra \(C{M^2} = C{B^2} - M{B^2} = C{B^2} - {\left( {\frac{1}{2}CB} \right)^2} = \frac{3}{4}C{B^2}.\)

Do đó \({\left( {3\sqrt 3 } \right)^2} = \frac{3}{4}C{B^2}\) suy ra \(CB = 6{\rm{\;cm}}.\)

Vì các mặt của hình chóp \(S.ABC\) là các tam giác đều nên các cạnh bên của hình chóp có độ dài là \(6{\rm{\;cm}}.\)

b) Vì các tam giác \(SAB\)\(ABC\) là các tam giác đều bằng nhau nên ta có \(SM = CM = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2}\left( {AB + BC + CA} \right) \cdot SM = \frac{1}{2} \cdot \left( {6 + 6 + 6} \right) \cdot 3\sqrt 3 = 27\sqrt 3 \approx 46,77{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:

\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)

Vậy \(B = \frac{1}{{{x^2} + 1}}.\)

Lời giải

Hướng dẫn giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

 

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP