Cho hình chóp tam giác đều \(S.ABC\) có các mặt bên cũng là các tam giác đều. Gọi \(SO\) là đường cao của hình chóp, \(OC = 2\sqrt 3 {\rm{\;cm}}.\) Tính (làm tròn các kết quả đến chữ số thập phân thứ hai):

a) Độ dài các cạnh bên của hình chóp.
b) Diện tích xung quanh của hình chóp.
Cho hình chóp tam giác đều \(S.ABC\) có các mặt bên cũng là các tam giác đều. Gọi \(SO\) là đường cao của hình chóp, \(OC = 2\sqrt 3 {\rm{\;cm}}.\) Tính (làm tròn các kết quả đến chữ số thập phân thứ hai):

a) Độ dài các cạnh bên của hình chóp.
b) Diện tích xung quanh của hình chóp.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \(CM \bot AB\) và \(MA = MB = \frac{1}{2}CB.\)Vì \(SO\) là đường cao của hình chóp nên \(O\) là trọng tâm của tam giác \(ABC.\)
Do đó \(CM = \frac{3}{2}CO = \frac{3}{2} \cdot 2\sqrt 3 = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Áp dụng định lí Pythagore cho tam giác vuông \(CBM,\) ta có: \(C{B^2} = C{M^2} + M{B^2}\)
Suy ra \(C{M^2} = C{B^2} - M{B^2} = C{B^2} - {\left( {\frac{1}{2}CB} \right)^2} = \frac{3}{4}C{B^2}.\)
Do đó \({\left( {3\sqrt 3 } \right)^2} = \frac{3}{4}C{B^2}\) suy ra \(CB = 6{\rm{\;cm}}.\)
Vì các mặt của hình chóp \(S.ABC\) là các tam giác đều nên các cạnh bên của hình chóp có độ dài là \(6{\rm{\;cm}}.\)
b) Vì các tam giác \(SAB\) và \(ABC\) là các tam giác đều bằng nhau nên ta có \(SM = CM = 3\sqrt 3 {\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2}\left( {AB + BC + CA} \right) \cdot SM = \frac{1}{2} \cdot \left( {6 + 6 + 6} \right) \cdot 3\sqrt 3 = 27\sqrt 3 \approx 46,77{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
a) Ta lập bảng số liệu thống kê số giờ nắng của các tháng trong năm 2022 như sau:
|
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
Tổng số giờ nắng (h) |
\[34,4\] |
\[27,5\] |
\[49,4\] |
\[108,2\] |
\[88,8\] |
\[186,6\] |
\[190,7\] |
\[151,7\] |
\[133,2\] |
\[165,0\] |
\[126,2\] |
\[102,1\] |
b) Ta hoàn thành được biểu đồ đoạn thẳng biểu diễn số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định như sau:

c) Số giờ nắng tại Nam Định trong tháng 7 là cao nhất \(\left( {190,7\,\,\,h} \right)\) và tháng 2 là thấp nhất \(\left( {27,5\,\,h} \right).\)
d) Số giờ nắng của các tháng trong năm 2022 tại Nam Định giảm trong các khoảng thời gian: tháng 1 – tháng 2; tháng 4 – tháng 5; tháng 7 – tháng 8; tháng 8 – tháng 9; tháng 10 – tháng 11; tháng 11 – tháng 12.
Số giờ nắng của các tháng trong năm 2022 tại Nam Định tăng trong các khoảng thời gian: tháng 2 – tháng 3; tháng 3 – tháng 4; tháng 5 – tháng 6; tháng 6 – tháng 7; tháng 9 – tháng 10.
e) So với tháng 9, số giờ nắng tại Nam Định trong tháng 10 bằng \(\frac{{165}}{{133,2}} \cdot 100\% \approx 123,87\% .\)
Khi đó tháng 10 tăng khoảng \(123,87\% - 100\% = 23,87\% \) so với tháng 9.
Vậy thông tin của bài báo đó không chính xác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

