Cho hình vuông \[ABCD.\] Lấy điểm \[M\] thuộc đường chéo \[BD.\] Kẻ \[ME\] vuông góc với \(AB\) tại \[E,{\rm{ }}MF\] vuông góc với \[AD\] tại \[F.\]
a) Tứ giác \(AEMF\) là hình gì? Vì sao?
b) Xác định vị trí của điểm \[M\] trên đường chéo \[BD\] để diện tích của tứ giác \[AEMF\] lớn nhất.
Cho hình vuông \[ABCD.\] Lấy điểm \[M\] thuộc đường chéo \[BD.\] Kẻ \[ME\] vuông góc với \(AB\) tại \[E,{\rm{ }}MF\] vuông góc với \[AD\] tại \[F.\]
a) Tứ giác \(AEMF\) là hình gì? Vì sao?
b) Xác định vị trí của điểm \[M\] trên đường chéo \[BD\] để diện tích của tứ giác \[AEMF\] lớn nhất.
Quảng cáo
Trả lời:
![Cho hình vuông \[ABCD.\] Lấy điểm \[M\] thuộc đường chéo \[BD.\] Kẻ \[ME\] vuông góc với \(AB\) tại \[E,{\rm{ }}MF\] vuông góc với \[AD\] tại \[F.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/28-1758293690.png)
a) Do \[ME \bot AB\] tại \(E\) nên \(\widehat {MEA} = 90^\circ .\)
Do \[MF \bot AD\] tại \(F\) nên \(\widehat {MFA} = 90^\circ .\)
Do \(ABCD\) là hình vuông nên \(\widehat {EAF} = 90^\circ .\)
Tứ giác \[AEMF\] có \(\widehat {MFA} = \widehat {EAF} = \widehat {AEM} = 90^\circ \) nên \[AEMF\] là hình chữ nhật.b) Do \(ABCD\) là hình vuông nên \(BD\) là đường phân giác của góc \(\widehat {ABC}\)
Do đó \(\widehat {ABD} = 45^\circ \) suy ra \(\Delta BEM\) vuông cân tại \(E,\) nên \(BE = ME.\)
Do \[AEMF\] là hình chữ nhật nên \(ME = AF\), suy ra \(BE = AF.\)
Chu vi của hình chữ nhật \[AEMF\] là: \[2\left( {AE + AF} \right) = 2\left( {AE + BE} \right) = 2AB.\]
Mà \(AB\) không đổi nên chu vi của hình chữ nhật \[AEMF\] không đổi.
Do đó, diện tích của tứ giác \[AEMF\] lớn nhất khi \[AEMF\] là hình vuông.
Suy ra \[ME = MF.\]
Khi đó \[\Delta BEM = \Delta DFM\] (cạnh góc vuông – góc nhọn kề).
Suy ra \[BM = DM\] hay \[M\] là trung điểm của \[BC.\,\]
Vậy với \[M\] là trung điểm của \[BC\] thì diện tích của tứ giác \[AEMF\] lớn nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:
\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)
\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)
\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)
\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)
Vậy \(B = \frac{1}{{{x^2} + 1}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

