Câu hỏi:

20/09/2025 14 Lưu

Cho hai biểu đồ dưới đây:

 Dữ liệu biểu diễn trên hai biểu đồ có như nhau không? Nếu có hãy lập bảng thống kê cho dữ liệu đó. (ảnh 1)

a) Dữ liệu biểu diễn trên hai biểu đồ có như nhau không? Nếu có hãy lập bảng thống kê cho dữ liệu đó.

b) Có thể căn cứ vào độ dốc trên hai đường gấp khúc trên hai biểu đồ để đánh giá về tốc độ doanh thu trong 5 năm của các dữ liệu được biểu diễn không? Tại sao?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Dữ liệu biểu diễn trên hai biểu đồ là như nhau.

Ta có bảng thông kê sau:

Năm

2018

2019

2020

2021

2022

Doanh thu (tỉ đồng)

30

32

32

34

40

b) Không thể căn cứ và độ dốc để đánh giá về tốc độ doanh thu trong trong 5 năm của các dữ liệu được biểu diễn. Vì độ dốc của biểu đồ phụ thuộc vào việc chọn đơn vị của trục đứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)

Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)

Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)

Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).

Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:

\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]

Lời giải

Hướng dẫn giải

e) Ta có \(E = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)

Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(E \ge \frac{{11}}{{16}}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x =  - 2.\)

Vậy giá trị nhỏ nhất của biểu thức \(E\) là \(\frac{{11}}{{16}}\) tại \(x =  - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP