Câu hỏi:

20/09/2025 16 Lưu

Cho x y thoả mãn: \[{x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\]. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức \[M = x + y + 6\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cách 1. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)

\({x^2} + 2xy + {y^2} + 6x + 6y + 9 - 1 = - {y^2}\)

\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} - 1 = - {y^2}\)

\({\left( {x + y + 3} \right)^2} - 1 = - {y^2}\)

\(\left( {x + y + 3 + 1} \right)\left( {x + y + 3 - 1} \right) = - {y^2}\)

\(\left( {x + y + 4} \right)\left( {x + y + 2} \right) = - {y^2}\).

Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\)

Nên \(\left( {x + y + 4} \right)\left( {x + y + 2} \right) \le 0.\)

\(\left( {x + y + 6 - 2} \right)\left( {x + y + 6 - 4} \right) \le 0\)

\(\left( {M - 2} \right)\left( {M - 4} \right) \le 0\) \((*)\)

Với mọi \(x,\,\,y\)\[M = x + y + 6\] ta lại có \(M - 4 < M - 2\) nên để \((*)\) xảy ra thì \(M - 4 \le 0\)\(M - 2 \ge 0.\)

Xét \(M - 4 \le 0\) ta có \(M \le 4\).

Dấu “=” xảy ra khi \(x + y + 2 = 0\)\(y = 0\), tức là \(x = - 2,\,\,y = 0.\)

Xét \(M - 2 \ge 0\) ta có \(M \ge 2\).

Dấu “=” xảy ra khi \(x + y + 4 = 0\)\(y = 0\), tức là \(x = - 4,\,\,y = 0.\)

Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)

Cách 2. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)

\({x^2} + 2xy + {y^2} + 6x + 6y + 9 = 1 - {y^2}\)

\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} = 1 - {y^2}\)

\({\left( {x + y + 3} \right)^2} = 1 - {y^2}\)

Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\) nên \(1 - {y^2} \le 1\).

Suy ra: \({\left( {x + y + 3} \right)^2} \le 1\), do đó \(\left| {x + y + 3} \right| \le 1\) hay \( - 1 \le x + y + 3 \le 1\).

Vì vậy, \(2 \le x + y + 6 \le 4\)

Xét \(x + y + 6 \le 4\) hay \(M \le 4\). Dấu “=” xảy ra khi \(x + y + 6 = 4\)\(y = 0\), tức là \(x = - 2,\,\,y = 0.\)

Xét \(2 \le x + y + 6\) hay \(M \ge 2\). Dấu “=” xảy ra khi \(x + y + 6 = 2\)\(y = 0\), tức là \(x = - 4,\,\,y = 0.\)

Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)

Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)

Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)

Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).

Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:

\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]

Lời giải

Hướng dẫn giải

e) Ta có \(E = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)

Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(E \ge \frac{{11}}{{16}}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x =  - 2.\)

Vậy giá trị nhỏ nhất của biểu thức \(E\) là \(\frac{{11}}{{16}}\) tại \(x =  - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP