Câu hỏi:

20/09/2025 37 Lưu

Chứng minh rằng

     a) Nếu \[x\] là số tự nhiên không chia hết cho \[3\] thì \(M = 2{x^2} - 5\) chia hết cho \[3\] .

     b) Nếu \(x\) là số tự nhiên lẻ thì \(N = {x^3} + 3{x^2} - x - 3\) chia hết cho \[8\] .

     c) Đa thức \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\] (với \(x \in \mathbb{Z}\)) là bình phương của một số nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Vì \[x\] là số tự nhiên không chia hết cho \[3\] nên ta có \(x = 3k + 1\) hoặc \(x = 3k + 2\,\,\left( {k \in \mathbb{N}} \right)\).

Với \(x = 3k + 1\) ta có: \[M = 2{\left( {3k + 1} \right)^2} - 5\]\[ = 2\left( {9{k^2} + 6k + 1} \right) - 5\]

\[ = 18{k^2} + 12k + 2 - 5\]\[ = 18{k^2} + 12k - 3 = 3\left( {6{k^2} + 4k - 1} \right)\,\, \vdots \,\,3\].

Với \(x = 3k + 2\) ta có: \[M = 2{\left( {3k + 2} \right)^2} - 5\]\[ = 2\left( {9{k^2} + 12k + 4} \right) - 5\]

\[ = 18{k^2} + 24k + 8 - 5\]\[ = 18{k^2} + 24k + 3\]\[ = 3\left( {6{k^2} + 8k + 1} \right)\,\, \vdots \,\,3\].

Vậy \[x\] là số tự nhiên không chia hết cho \[3\] thì \(M = 2{x^2} - 5\) chia hết cho \[3\].

b) Vì \(x\) là số tự nhiên lẻ nên ta có \(x = 2k + 1\,\,\left( {k \in \mathbb{N}} \right)\). Do đó:

\(N = {\left( {2k + 1} \right)^3} + 3{\left( {2k + 1} \right)^2} - \left( {2k + 1} \right) - 3\)

\( = 8{k^3} + 12{k^2} + 6k + 1 + 12{k^2} + 12k + 3 - 2k - 1 - 3\)

\( = 8{k^3} + 24{k^2} + 16k\)

\( = 8\left( {{k^3} + 3{k^2} + 2k} \right)\,\, \vdots \,\,8\)

Vậy \(x\) là số tự nhiên lẻ thì \(N = {x^3} + 3{x^2} - x - 3\) chia hết cho \[8\].

c) Ta có \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\]\( = x\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 1} \right) + 1\)

\( = \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) + 1\)\( = {\left( {{x^2} + 3x} \right)^2} + 2\left( {{x^2} + 3x} \right) + 1\)\( = {\left( {{x^2} + 3x + 1} \right)^2}\).

Với \(x \in \mathbb{Z}\) ta có \(\left( {{x^2} + 3x + 1} \right) \in \mathbb{Z}\). Do đó \({\left( {{x^2} + 3x + 1} \right)^2}\) là bình phương của một số nguyên.

Vậy đa thức \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\] (với \(x \in \mathbb{Z}\)) là bình phương của một số nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:

\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)

Vậy \(B = \frac{1}{{{x^2} + 1}}.\)

Lời giải

Hướng dẫn giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

 

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP