Trong homestay Panorama Tam Đảo (Phú Thọ) có hai bể bơi dạng hình hộp chữ nhật. Bể thứ nhất có độ sâu \(1,4{\rm{ m,}}\) đáy là hình chữ nhật có chiều dài \(x{\rm{ }}\left( {\rm{m}} \right),\) chiều dài \(y{\rm{ }}\left( {\rm{m}} \right)\). Bể thứ hai có độ sâu \(1,6{\rm{ m}}\), đáy là hình chữ nhật có diện tích gấp 3 lần diện tích đáy của bể thứ nhất. Người ta bơm nước vào đầy hai bể bơi.
a) Thể tích của bể bơi thứ nhất là \(1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Diện tích đáy của bể bơi thứ hai là \(3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
c) Thể tích của bể bơi thứ hai lớn hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
d) Cần nhiều hơn \(6xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\) nước để bơm đầy vào hai bể bơi trong homestay.
Trong homestay Panorama Tam Đảo (Phú Thọ) có hai bể bơi dạng hình hộp chữ nhật. Bể thứ nhất có độ sâu \(1,4{\rm{ m,}}\) đáy là hình chữ nhật có chiều dài \(x{\rm{ }}\left( {\rm{m}} \right),\) chiều dài \(y{\rm{ }}\left( {\rm{m}} \right)\). Bể thứ hai có độ sâu \(1,6{\rm{ m}}\), đáy là hình chữ nhật có diện tích gấp 3 lần diện tích đáy của bể thứ nhất. Người ta bơm nước vào đầy hai bể bơi.
a) Thể tích của bể bơi thứ nhất là \(1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Diện tích đáy của bể bơi thứ hai là \(3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
c) Thể tích của bể bơi thứ hai lớn hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
d) Cần nhiều hơn \(6xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\) nước để bơm đầy vào hai bể bơi trong homestay.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: a) Đúng. b) Đúng. c) Sai. d) Đúng.
⦁ Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý a) đúng.
⦁ Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.
Như vậy, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý b) đúng.
⦁ Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Vì \(4,8 < 5\) nên \(4,8xy < 5xy\).
Như vậy, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý c) sai.
⦁ Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý d) đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 130.
Theo đề bài \(\widehat A - 2\widehat B = 30^\circ \) nên \(\widehat A = 2\widehat B + 30^\circ \).
Vì \[ABCD\] là hình thang cân nên \(\widehat A + \widehat B = 180^\circ \) nên \(2\widehat B + 30^\circ + \widehat B = 180^\circ \).
Suy ra \(3\widehat B = 150^\circ \) hay \(\widehat B = 50^\circ \) nên \(\widehat A = 130^\circ .\)
Do đó \(\widehat A = \widehat D = 130^\circ .\)
Vậy số đo góc tại đỉnh \[D\] của hình thang là \(130^\circ .\)
Lời giải
Hướng dẫn giải
Đáp án: \(24,6\).
Tổng sản lượng thủy sản nước ta qua các năm là:
\(5{\rm{ }}204,5 + 6{\rm{ }}420,5 + 6{\rm{ }}924,4 + 7{\rm{ }}885,9 + 8{\rm{ }}635,7 = 35{\rm{ }}071\) (nghìn tấn)
Sản lượng thủy sản của nước ta năm 2020 so với tổng sản lượng thủy sản của nước ta qua các năm chiếm số phần trăm là: \(\frac{{8{\rm{ }}635,7}}{{35{\rm{ }}071}}.100\% \approx 24,6\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
