Một sân bóng hình chữ nhật có chiều dài \(15x + 5y{\rm{ }}\left( {\rm{m}} \right)\) và chiều rộng là \(10x - 5y{\rm{ }}\left( {\rm{m}} \right)\). Mỗi cạnh chừa lại \({\rm{3 m}}\) làm lối đi. Phần trong là sân trồng cỏ phục vụ cho các trận đấu.

a) Chiều dài của mặt sân trồng cỏ là \(10x - 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
b) Chiều rộng của mặt sân trồng cỏ là \(10x + 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
c) Biểu thức biểu diễn diện tích của mặt sân trồng cỏ là \(S = 100{x^2} - 25{y^2} - 120x + 36{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
d) Diện tích của mặt sân trồng cỏ khi \(x = 9{\rm{ m}},\,\,y = 3{\rm{ m}}\) có giá trị lớn hơn \(6800{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Một sân bóng hình chữ nhật có chiều dài \(15x + 5y{\rm{ }}\left( {\rm{m}} \right)\) và chiều rộng là \(10x - 5y{\rm{ }}\left( {\rm{m}} \right)\). Mỗi cạnh chừa lại \({\rm{3 m}}\) làm lối đi. Phần trong là sân trồng cỏ phục vụ cho các trận đấu.
a) Chiều dài của mặt sân trồng cỏ là \(10x - 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
b) Chiều rộng của mặt sân trồng cỏ là \(10x + 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
c) Biểu thức biểu diễn diện tích của mặt sân trồng cỏ là \(S = 100{x^2} - 25{y^2} - 120x + 36{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
d) Diện tích của mặt sân trồng cỏ khi \(x = 9{\rm{ m}},\,\,y = 3{\rm{ m}}\) có giá trị lớn hơn \(6800{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: a) Sai. b) Sai. c) Đúng. d) Đúng.
⦁ Vì mỗi cạnh chừa lại 3 m làm lối đi nên chiều dài của mặt sân trồng cỏ là:
\(10x + 5y - 2.3 = 10x + 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
Do đó ý a) sai.
⦁ Vì mỗi cạnh chừa lại 3 m làm lối đi nên chiều rộng của mặt sân trồng cỏ là:
\(10x - 5y - 2.3 = 10x - 5y - 6{\rm{ }}\left( {\rm{m}} \right).\)
Do đó ý b) sai.
⦁ Biểu thức biểu thị diện tích của mặt sân trồng cỏ là:
\(\left( {10x - 5y - 6} \right)\left( {10x + 5y - 6} \right) = 100{x^2} - 25{y^2} - 120x + 36{\rm{ }}\left( {{{\rm{m}}^2}} \right)\)
Do đó ý c) đúng.
⦁ Thay \(x = 9{\rm{ }}\left( {\rm{m}} \right),y = 3{\rm{ }}\left( {\rm{m}} \right)\) vào biểu thức biểu thị diện tích của mặt sân trồng cỏ, ta được:
\(S = {100.9^2} - {25.3^2} - 120.9 + 36 = 6{\rm{ }}831{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Do đó ý d) đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 130.
Theo đề bài \(\widehat A - 2\widehat B = 30^\circ \) nên \(\widehat A = 2\widehat B + 30^\circ \).
Vì \[ABCD\] là hình thang cân nên \(\widehat A + \widehat B = 180^\circ \) nên \(2\widehat B + 30^\circ + \widehat B = 180^\circ \).
Suy ra \(3\widehat B = 150^\circ \) hay \(\widehat B = 50^\circ \) nên \(\widehat A = 130^\circ .\)
Do đó \(\widehat A = \widehat D = 130^\circ .\)
Vậy số đo góc tại đỉnh \[D\] của hình thang là \(130^\circ .\)
Câu 2
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Lời giải
Đáp án: a) Sai. b) Đúng. c) Sai. d) Sai.
⦁ Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). Do đó ý a) sai.
⦁ Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)
Do đó tứ giác \[AMHN\] là hình chữ nhật. Do đó ý b) đúng.
⦁ Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {HKC} = \widehat {OHM}\) (so le trong) nên \(\widehat {HKC} = \widehat {OMH}\).
Mặt khác \(\widehat {HKC} = \widehat {HAC}\) (chứng minh ý a) nên \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân. Do đó ý c) sai.
⦁ Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\). Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho tam giác \(ABC\) có đường cao \(AH\). Kẻ \(HE \bot AB\) tại \(E\) kéo dài lấy \(ME = HE\). Kẻ \(HF \bot AC\) tại \(F\), kéo dài \(HF\) lấy \(FN = FH\). Gọi \(I\) là trung điểm của \(MN\).
a) \(AB\) là trung trực của \(NH.\) b) \(EF\parallel MN.\)
c) \(\Delta AMN\) cân tại \(M.\) d) \(AI \bot EF.\)
Cho tam giác \(ABC\) có đường cao \(AH\). Kẻ \(HE \bot AB\) tại \(E\) kéo dài lấy \(ME = HE\). Kẻ \(HF \bot AC\) tại \(F\), kéo dài \(HF\) lấy \(FN = FH\). Gọi \(I\) là trung điểm của \(MN\).
a) \(AB\) là trung trực của \(NH.\) b) \(EF\parallel MN.\)
c) \(\Delta AMN\) cân tại \(M.\) d) \(AI \bot EF.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.