Cho \(A = {a^3} - {b^3} + 5ab + 5{a^2} + 5{b^2}.\)
a) \(A = \left( {{a^2} - ab + {b^2}} \right)\left( {a - b + 5} \right).\)
b) Nếu \(a - b = - 5\) thì giá trị biểu thức \(A\) bằng \(0.\)
c) Nếu \(a - b = 10\) thì
d) Nếu \({a^2} + {b^2} = - ab\) thì giá trị của biểu thức \(A\) bằng \(1.\)
Cho \(A = {a^3} - {b^3} + 5ab + 5{a^2} + 5{b^2}.\)
a) \(A = \left( {{a^2} - ab + {b^2}} \right)\left( {a - b + 5} \right).\)
b) Nếu \(a - b = - 5\) thì giá trị biểu thức \(A\) bằng \(0.\)
c) Nếu \(a - b = 10\) thì
d) Nếu \({a^2} + {b^2} = - ab\) thì giá trị của biểu thức \(A\) bằng \(1.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: a) Sai. b) Đúng. c) Sai. d) Sai.
⦁ Ta có \(A = \left( {{a^3} - {b^3}} \right) + \left( {5ab + 5{a^2} + 5{b^2}} \right)\)
\( = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) + 5\left( {{a^2} + ab + {b^2}} \right)\)
\( = \left( {{a^2} + ab + {b^2}} \right)\left( {a - b + 5} \right)\).
Do đó ý a) sai.
⦁ Với \(a - b = - 5\) ta có: \(A = \left( {{a^2} + ab + {b^2}} \right)\left( {5 - 5} \right) = 0.\) Do đó ý b) đúng.
⦁ Với \(a - b = 10\) ta có: \(A = \left( {{a^2} + ab + {b^2}} \right)\left( {10 - 5} \right) = 5\left( {{a^2} + ab + {b^2}} \right) \vdots 5.\) Do đó ý c) sai.
⦁ Vì \({a^2} + {b^2} = - ab\) nên \({a^2} + ab + {b^2} = 0.\)
Với \({a^2} + ab + {b^2} = 0\) ta có: \(A = 0\left( {a - b + 5} \right) = 0.\) Do đó ý d) sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 130.
Theo đề bài \(\widehat A - 2\widehat B = 30^\circ \) nên \(\widehat A = 2\widehat B + 30^\circ \).
Vì \[ABCD\] là hình thang cân nên \(\widehat A + \widehat B = 180^\circ \) nên \(2\widehat B + 30^\circ + \widehat B = 180^\circ \).
Suy ra \(3\widehat B = 150^\circ \) hay \(\widehat B = 50^\circ \) nên \(\widehat A = 130^\circ .\)
Do đó \(\widehat A = \widehat D = 130^\circ .\)
Vậy số đo góc tại đỉnh \[D\] của hình thang là \(130^\circ .\)
Lời giải
Hướng dẫn giải
Đáp án: \(24,6\).
Tổng sản lượng thủy sản nước ta qua các năm là:
\(5{\rm{ }}204,5 + 6{\rm{ }}420,5 + 6{\rm{ }}924,4 + 7{\rm{ }}885,9 + 8{\rm{ }}635,7 = 35{\rm{ }}071\) (nghìn tấn)
Sản lượng thủy sản của nước ta năm 2020 so với tổng sản lượng thủy sản của nước ta qua các năm chiếm số phần trăm là: \(\frac{{8{\rm{ }}635,7}}{{35{\rm{ }}071}}.100\% \approx 24,6\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
