Chị Lan đã ghi lại khối lượng bán được của mỗi loại mà sạp hoa quả của chị bán được trong ngày và biểu diễn trong biểu đồ dưới đây:

a) Chị Lan đã thu thập dữ liệu của biểu đồ trên bằng phương pháp thu thập gián tiếp.
b) Từ biểu đồ hình quạt tròn, ta có bảng thống kê sau:
Loại trái cây
Tỉ lệ phần trăm
Cam
18%
Xoài
26%
Mít
24%
Ổi
12%
Sầu riêng
20%
c) Số kilôgam sầu riêng mà sạp hoa quả của chị Lan đã bán được trong ngày hôm đó là \(40{\rm{ kg}}{\rm{.}}\)
d) Số kilôgam Xoài bán được nhiều hơn Sầu riêng là \({\rm{12 kg}}{\rm{.}}\)
Chị Lan đã ghi lại khối lượng bán được của mỗi loại mà sạp hoa quả của chị bán được trong ngày và biểu diễn trong biểu đồ dưới đây:

a) Chị Lan đã thu thập dữ liệu của biểu đồ trên bằng phương pháp thu thập gián tiếp.
b) Từ biểu đồ hình quạt tròn, ta có bảng thống kê sau:
|
Loại trái cây |
Tỉ lệ phần trăm |
|
Cam |
18% |
|
Xoài |
26% |
|
Mít |
24% |
|
Ổi |
12% |
|
Sầu riêng |
20% |
c) Số kilôgam sầu riêng mà sạp hoa quả của chị Lan đã bán được trong ngày hôm đó là \(40{\rm{ kg}}{\rm{.}}\)
d) Số kilôgam Xoài bán được nhiều hơn Sầu riêng là \({\rm{12 kg}}{\rm{.}}\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: a) Sai. b) Sai. c) Đúng. d) Sai.
a) Chị Lan đã ghi lại, thống kê và biểu diễn dữ liệu trên biểu đồ nên ta kết luận chị đã thu thập dữ liệu được biểu diễn trên biểu đồ bằng phương pháp thu thập trực tiếp.
b) Từ biểu đồ hình quạt tròn, ta hoàn thành được bảng thống kê sau:
|
Loại trái cây |
Tỉ lệ phần trăm |
|
Cam |
18% |
|
Xoài |
24% |
|
Mít |
26% |
|
Ổi |
12% |
|
Sầu riêng |
20% |
c) Số kilôgam sầu riêng mà sạp hoa quả của chị Lan bán được trong ngày hôm đó là
\(200.20\% = 40\) (kg).
d) Số kilôgam xoài mà sạp hoa quả của chị Lan bán được trong ngày hôm đó là
\(200.24\% = 48\) (kg)
Vậy số kilôgam xoài bán được nhiều hơn sầu riêng là: \(48 - 40 = 8\) (kg).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 130.
Theo đề bài \(\widehat A - 2\widehat B = 30^\circ \) nên \(\widehat A = 2\widehat B + 30^\circ \).
Vì \[ABCD\] là hình thang cân nên \(\widehat A + \widehat B = 180^\circ \) nên \(2\widehat B + 30^\circ + \widehat B = 180^\circ \).
Suy ra \(3\widehat B = 150^\circ \) hay \(\widehat B = 50^\circ \) nên \(\widehat A = 130^\circ .\)
Do đó \(\widehat A = \widehat D = 130^\circ .\)
Vậy số đo góc tại đỉnh \[D\] của hình thang là \(130^\circ .\)
Câu 2
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Lời giải
Đáp án: a) Sai. b) Đúng. c) Sai. d) Sai.

⦁ Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). Do đó ý a) sai.
⦁ Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)
Do đó tứ giác \[AMHN\] là hình chữ nhật. Do đó ý b) đúng.
⦁ Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {HKC} = \widehat {OHM}\) (so le trong) nên \(\widehat {HKC} = \widehat {OMH}\).
Mặt khác \(\widehat {HKC} = \widehat {HAC}\) (chứng minh ý a) nên \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân. Do đó ý c) sai.
⦁ Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\). Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
