Câu hỏi:

20/09/2025 13 Lưu

Cho tam giác \(ABC\) có đường cao \(AH\). Kẻ \(HE \bot AB\) tại \(E\) kéo dài lấy \(ME = HE\). Kẻ \(HF \bot AC\) tại \(F\), kéo dài \(HF\) lấy \(FN = FH\). Gọi \(I\) là trung điểm của \(MN\).  

a) \(AB\) là trung trực của \(NH.\)                  b) \(EF\parallel MN.\)

c) \(\Delta AMN\) cân tại \(M.\)                   d) \(AI \bot EF.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Sai.        b) Đúng.    c) Sai.        d) Đúng.

Ta có \(HE \bot AB\) tại \(E\)\(ME = EH\).

Do đó, \(AB\) là trung trực của \(MH.\)

Lại có \(HF \bot AC\) tại \(F\)\(FN = FH\).

Như vậy, \(AC\) là trung trực của \(NH.\) Do đó ý a) sai.

Xét tam giác \(MHN\)\(E\) là trung điểm của \(MH\)\(F\) là trung điểm của \(HN.\)

Do đó, \(EF\) là đường trung bình của tam giác \(HNM\).

Suy ra \(EF\parallel MN.\) Do đó ý b) đúng.

Cho tam giác \(ABC\) có đường cao \(AH\). Kẻ \(HE \bot AB\) tại \(E\) kéo dài lấy \(ME = HE\). Kẻ \(HF \bot AC\) tại \(F\), kéo dài \(HF\) lấy \(FN = FH\). Gọi \(I\) là trung điểm của \(MN\).    a) \(AB\) là trung trực của \(NH.\) (ảnh 1)

Xét \(\Delta EAH\)\(\Delta EAM\) có: \(AE\) chung; \(ME = EH\) nên \(\Delta EAH = \Delta EAM\) (hai cạnh góc vuông)

Suy ra \(AM = AH\) (hai cạnh tương ứng).                        (1)

Tương tự, ta chứng minh \(\Delta FAH = \Delta FAN\) (hai cạnh góc vuông)

Suy ra \(AN = AH\) (hai cạnh tương ứng.                          (2)

Từ (1) và (2) suy ra \(AM = AN\) nên tam giác \(AMN\) cân tại \(A.\) Do đó ý c) sai.

Vì \(I\) là trung điểm của \(MN\) mà tam giác \(AMN\) cân tại \(A\) nên\(AI\) là đường cao của \(\Delta AMN.\)

\(EF\parallel MN\) (cmt) nên \(AI \bot EF.\) Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \(\Delta ABC\) vuông tại \(A\)\(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\)  cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)

a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).                                                                  

b) Tứ giác \[AMHN\] là hình chữ nhật.

c) Tứ giác \(MNCK\) là hình thang vuông.             

d) \(AK = 2AD\).

Lời giải

Đáp án:     a) Sai.        b) Đúng.    c) Sai.         d) Sai.

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in (ảnh 1)

Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). Do đó ý a) sai.

Xét tứ giác \(AMHN\)\(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)

Do đó tứ giác \[AMHN\] là hình chữ nhật. Do đó ý b) đúng.

Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)

Suy ra \(\widehat {OMH} = \widehat {OHM}\)\(\widehat {HKC} = \widehat {OHM}\) (so le trong) nên \(\widehat {HKC} = \widehat {OMH}\).

Mặt khác \(\widehat {HKC} = \widehat {HAC}\) (chứng minh ý a) nên \(\widehat {OMH} = \widehat {HKC}\).

Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân. Do đó ý c) sai.

Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên

\(AD = \frac{2}{3}AI\)\(AI = \frac{1}{2}AK\).

Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\). Do đó ý d) sai.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.         b) Đúng.         c) Sai.             d) Đúng.

Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý a) đúng.

Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.

Như vậy, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý b) đúng.

Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

\(4,8 < 5\) nên \(4,8xy < 5xy\).

Như vậy, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý c) sai.

Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý d) đúng.