Câu hỏi:

21/09/2025 24 Lưu

a) Một chiếc đèn thả trần có dạng hình chóp tam giác đều có tất cả các cạnh đều khoảng \[20\,\,{\rm{cm}}.\] Độ dài trung đoạn khoảng \[17,32{\rm{ cm}}.\] Tính diện tích xung quanh của chiếc đèn thả trần đó.

Tính diện tích xung quanh của chiếc đèn thả trần đó. (ảnh 1)

b) Cho hình chóp tam giác đều \[S.ABC\] có cạnh đáy bằng \[4\,\,cm\] và chiều cao tam giác đáy là \[3,5\,\,{\rm{cm;}}\] trung đoạn bằng \[5\,\,{\rm{cm}}.\] Tính diện tích xung quanh và diện tích toàn phần (tức là tổng diện tích các mặt) của hình chóp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Diện tích xung quanh của chiếc đèn thả trần đó là:

\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,20} \right)\,.\,\,17,32 = 519,6\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)

b) Diện tích xung quanh của hình chóp là:

\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,4} \right)\,.\,5 = 30\,\,\left( {c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP