Tính giá trị của biểu thức: \(A = 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\,\,...\,\,\left( {{3^{64}} + 1} \right)\).
Tính giá trị của biểu thức: \(A = 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\,\,...\,\,\left( {{3^{64}} + 1} \right)\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có \(A = 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\,\,\,...\,\,\left( {{3^{64}} + 1} \right)\)
Suy ra \(2A = 2 \cdot 4\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\,\left( {{3^8} + 1} \right)\,\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \left( {3 - 1} \right)\left( {3 + 1} \right)\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\,\,\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \left( {{3^2} - 1} \right)\left( {{3^2} + 1} \right)\left( {{3^4} + 1} \right)\,\left( {{3^8} + 1} \right)\,\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \left[ {{{\left( {{3^2}} \right)}^2} - 1} \right]\left( {{3^4} + 1} \right)\left( {{3^8} + 1} \right)\,\,\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \left( {{3^4} - 1} \right)\left( {{3^4} + 1} \right)\,\left( {{3^8} + 1} \right)\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \,\left[ {{{\left( {{3^4}} \right)}^2} - 1} \right]\,\left( {{3^8} + 1} \right)\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = \,\left( {{3^8} - 1} \right)\,\left( {{3^8} + 1} \right)\,...\,\,\left( {{3^{64}} + 1} \right)\)
\( = {\left( {{3^{64}}} \right)^2} - 1\)\( = {3^{128}} - 1.\)
Do đó \(A = \frac{{{3^{128}} - 1}}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Ta có \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\)
\(2{x^2} + 2{y^2} - 6x - 6y + 2xy + 6 = 0\)
\({\left( {x + y - 2} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\).
Từ đó suy ra \[x = y = 1.\]
Thay \(x = y = 1\) vào biểu thức Q ta được \(Q = {\left( {1 - 1} \right)^{2023}} + {\left( {1 - 2} \right)^{2024}} + {1^{2025}} = 0 + 1 + 1 = 2\).
Vậy \[Q = 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.