Câu hỏi:

21/09/2025 21 Lưu

Cho các số x, y thoả mãn \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\). Tính giá trị của biểu thức \(Q = {\left( {x - y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {y^{2025}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\)

\(2{x^2} + 2{y^2} - 6x - 6y + 2xy + 6 = 0\)

\({\left( {x + y - 2} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\).

Từ đó suy ra \[x = y = 1.\]

Thay \(x = y = 1\) vào biểu thức Q ta được \(Q = {\left( {1 - 1} \right)^{2023}} + {\left( {1 - 2} \right)^{2024}} + {1^{2025}} = 0 + 1 + 1 = 2\).

Vậy \[Q = 2.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP