Câu hỏi:

21/09/2025 11 Lưu

Cho \({a^2} + {b^2} + {c^2} = 0\). Chứng minh rằng \(A = B = C\) với

\[A = {a^2}\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {c^2}} \right)\],

\(B = {b^2}\left( {{b^2} + {c^2}} \right)\left( {{b^2} + {a^2}} \right)\),

\(C = {c^2}\left( {{c^2} + {a^2}} \right)\left( {{c^2} + {b^2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có:

\[A = {a^2}\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {c^2}} \right)\]

\( = \left( {{a^4} + {a^2}{b^2}} \right)\left( {{a^2} + {c^2}} \right)\)

.\( = {a^6} + {a^4}{c^2} + {a^4}{b^2} + {a^2}{b^2}{c^2}\).

\( = {a^4}\left( {{a^2} + {c^2} + {b^2}} \right) + {a^2}{b^2}{c^2}\)

\( = {a^4}.0 + {a^2}{b^2}{c^2}\)

\( = {a^2}{b^2}{c^2}\).                     (1)

\(B = {b^2}\left( {{b^2} + {c^2}} \right)\left( {{b^2} + {a^2}} \right)\)

\( = \left( {{b^4} + {b^2}{c^2}} \right)\left( {{b^2} + {a^2}} \right)\)

\( = {b^6} + {b^4}{a^2} + {b^4}{c^2} + {a^2}{b^2}{c^2}\)

\( = {b^4}\left( {{b^2} + {a^2} + {c^2}} \right) + {a^2}{b^2}{c^2}\)

\( = {b^4}.0 + {a^2}{b^2}{c^2}\)

\( = {a^2}{b^2}{c^2}\).                      (2)

\(C = {c^2}\left( {{c^2} + {a^2}} \right)\left( {{c^2} + {b^2}} \right)\)

\( = \left( {{c^4} + {c^2}{a^2}} \right)\left( {{c^2} + {b^2}} \right)\)

\( = {c^6} + {c^4}{b^2} + {c^4}{a^2} + {a^2}{b^2}{c^2}\)

\( = {c^4}\left( {{c^2} + {b^2} + {a^2}} \right) + {a^2}{b^2}{c^2}\)

\( = {c^4}.0 + {a^2}{b^2}{c^2}\)

\( = {a^2}{b^2}{c^2}\).                      (3)

Từ (1), (2) và (3) suy ra \(A = B = C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) \({x^2} - x - {y^2} + y\)

\( = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y - 1} \right)\).

Lời giải

a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)

\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP