Phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau:
a) \[A = 4\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {2x - 4} \right)^2} + {\left( {x + 1} \right)^2}\] tại \[x = \frac{1}{2};\]
Phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau:
a) \[A = 4\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {2x - 4} \right)^2} + {\left( {x + 1} \right)^2}\] tại \[x = \frac{1}{2};\]
Quảng cáo
Trả lời:

Lời giải:
a) Ta có \[A = 4\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {2x - 4} \right)^2} + {\left( {x + 1} \right)^2}\]
\( = {\left( {2x - 4} \right)^2} + 2.2\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left( {2x - 4} \right)^2} + 2.\left( {2x - 4} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left[ {\left( {2x - 4} \right) + \left( {x + 1} \right)} \right]^2}\)
\( = {\left( {2x - 4 + x + 1} \right)^2}\)
\( = {\left( {3x - 3} \right)^2}\)
\( = {\left[ {3\left( {x - 1} \right)} \right]^2}\)
\( = 9{\left( {x - 1} \right)^2}\).
Do đó \(A = 9{\left( {x - 1} \right)^2}\).
Thay \[x = \frac{1}{2}\] vào \(A\) ta được \(A = 9{\left( {\frac{1}{2} - 1} \right)^2} = 9.{\left( { - \frac{1}{2}} \right)^2} = 9.\frac{1}{4} = \frac{9}{4}\).
Vậy \(A = \frac{9}{4}\) tại \[x = \frac{1}{2}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) \({x^2} - x - {y^2} + y\)
\( = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\)
\( = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\)
\( = \left( {x - y} \right)\left( {x + y - 1} \right)\).
Lời giải
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)
\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.