Câu hỏi:

23/09/2025 10 Lưu

Cho các hình vẽ sau, hãy cho biết những cặp đường thẳng nào song song với nhau và giải thích vì sao?

Cho các hình vẽ sau, hãy cho biết những cặp đường thẳng nào song song với nhau và giải thích vì sao? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hình a) ta có: \(\widehat A = 45^\circ \)\(\widehat B = 45^\circ \) nên \(\widehat A = \widehat B\) mà hai góc này nằm ở vị trí so le trong nên suy ra:

\(m\parallel n\).

Hình b) ta có: \(\widehat M = 60^\circ \)\(\widehat N = 60^\circ \) nên \(\widehat M = \widehat N\) mà hai góc này nằm ở vị trí so le trong nên suy ra: \(a\parallel b\).

Hình c) không có hai đường thẳng nào song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)

Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)

Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).

Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).

TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).

TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).

Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).

Lời giải

a) \(A = \frac{5}{{2x - 3}}\)

Điều kiện \(2x - 3 \ne 0\) hay \(x \ne \frac{3}{2}\).

Để \(A\) có giá trị nguyên thì \(5 \vdots \left( {2x - 3} \right)\) hay \(\left( {2x - 3} \right)\) là ước của \(5\).

Mà các ước của \(5\) là: \( - 5; - 1;1;5.\)

Ta có bảng sau:

\(2x - 3\)

\( - 5\)

\( - 1\)

\(1\)

\(5\)

\(x\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;1;2;4} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP